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Bargaining and Market Power in Networks 

As we mentioned Lecture 1, an important social science question is 
how a player’s position in a network conveys social or economic 
“power”. 

One can think of different kinds of “power”, but one important 
and readily formalized one is economic “bargaining power”: what 
share of the value created by economic transactions that one is 
involved in does one appropriate oneself, and what share goes to 
one’s partners? 
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Bargaining and Market Power in Networks (cntd.) 
To analyze this, build on matching market model from last class. 
I Bipartite network of buyers I and sellers J. 
I Each buyer wants to consume at most 1 good; each seller has 
1 good for sale. 

Last class, we showed that a competitive equilibrium always exists 
and is effi cient (maximizes total value) in this market. 

But we didn’t say much about how the value is divided among the 
players– that is, what network positions are most “powerful.” 
I To isolate role of network in determing division of value, today 
we assume that vij ∈ {0, 1} for each buyer i and seller j . 
One interpretation: the goods are identical but there are 
restrictions on who can trade with whom. 

I Given “unit-demand/unit-supply,” each player will get a payoff 
between 0 and 1. 

I This payoff is a measure of the bargaining power of that 
player’s network position. 
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A Simple Example 

I Suppose network consists of one seller (S) connected to two 
buyers (B1 and B2). 

I S has one good, which is worth 0 to her and 1 to each of the 
buyers. 

I What outcome do we expect will result? 
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Market-Clearing Prices 

What are market-clearing prices in this example? 

I At any price p < 1, both buyers demand the good. 
Demand>Supply. 

I At any price p > 1, neither buyer demands the good. 
Demand<Supply. 

I Unique market-clearing price is p = 1. 
I Both buyers are indifferent between purchasing and not. 
I To clear market, one buyer purchases at price 1, other buyer 
does not purchase. 

I Both buyers get payoff 0; seller gets payoff 1. 

In this simple network, the seller has “all the bargaining power” 
and gets the maximum possible payoff of 1; the buyers have “no 
bargaining power” and get the lowest possible payoff of 0. 
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Stable Outcomes 

We can reach the same conclusion that the seller has “all the 
bargaining power” by forgetting about prices and instead directly 
looking at “stable outcomes” of exchange. 

Intuitively, an outcome is “stable” if every subset of agents receives 
at least much value as it can create by trading on its own. 

I “Unstable” outcomes cannot persist because some group of 
agents can split off and do better on their own. 

I We’ll see that this notion of stability is more basic than 
competitive equilibrium: it doesn’t involve prices, yet in every 
competitive equilibrium the players’values must be stable in 
this sense. 
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Stable Outcomes (cntd.) 

Formally, for each subset of agents M ⊆ N, let v (M) be the 
maximum value they can create by trading on their own. 

I With unit-demand/unit-supply and vij ∈ {0, 1} for all i , j , this 
is simply the total number of trades that can be executed 
among buyers and sellers in M– that is, the number of links 
in a maximal matching in the subnetwork M (where ij are 
linked iff vij = 1). 

An outcome is stable if the vector of final payoffs (ui )i ∈N are such 
that, for every subset M ⊆ N, 

∑ ui ≥ v (M) . 
i ∈M 

I The set of all stable payoff vectors (ui )i ∈N is called the core 
of the game. 
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Stable Outcomes in the Example 

With one seller and two buyers, the only stable payoff vector is 
(uS = 1, uB1 = uB2 = 0). 

I This matches the competitive equilibrium, so in this example 
competitive equilibrium and the core coincide. 

We prove this by establishing some general facts about stable 
outcomes in matching markets. 

Note: This can also be proved by showing that the payoffs of any 
competitve equilibrium are always stable, which follows by a similar 
argument to the proof last class that competitive equilibria are 
always effi cient. But the proof we’ll give here is more useful for the 
rest of today’s lecture. 
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Stable Outcomes in the Example (cntd.) 
Fact 1: If player i is unmatched in some maximal matching, she 
gets payoff 0 in every stable outcome. 

Proof: 

I If i is unmatched in some maximal matching then 
v (N) = v (N\ {i}). 

I At a stable outcome, the players in N\ {i} must receive at 
least the value they can create on their own, which equals 
v (N\ {i}). 

I Since v (N\ {i}) = v (N), this leaves nothing for player i . 

A player who is unmatched in some maximal matching is called 
under-demanded. 

I In the example, the buyers are under-demanded, and hence 
each get payoff 0. 
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Stable Outcomes in the Example (cntd.) 

Fact 2: If player j is linked to some under-demanded player i , he 
gets payoff 1 in every stable outcome. 

Proof: 

I Since i and j are linked, v ({i , j}) = 1. 
I Hence, at a stable outcome, ui + uj must be at least 1. 
I Since i is under-demanded, ui = 0. 
I Hence, uj = 1. 

A player who is linked to an under-demanded player is called 
over-demanded. 

I In the example, the seller is over-demanded, hence gets payoff 
1. 10



More General Networks 

With 1 seller linked to 2 buyers, every node is either 
under-demanded (the buyers) or over-demanded (the seller). 

So, in this example, the facts that under-demanded players get 0 
and over-demanded players get 1 are enough to pin down 
everyone’s payoff. 

The same logic applies to any network in which every node is 
either under-demanded or over-demanded. 

However, in many networks some nodes are neither 
under-demanded nor over-demanded: e.g. 1 seller linked to 1 
buyer. 

We need to analyze this case further to determine the 
payoffs/bargaining power of nodes that are neither 
under-demanded nor over-demanded. 
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Dulmage—Mendelsohn Decomposition 
Nodes that are not neither under-demanded nor over-demanded 
are called perfectly matched. 

This terminology is explained by the following important graph 
theory: the Dulmage—Mendelsohn decomposition. 

Theorem 
Fix a bipartite network G with under-demanded, over-demanded, 
and perfectly matched sets U, O, and P. 
In every maximal matching in G, 

1. Every node in O is matched to a node in U. 

2. Every node in P is matched to another node in P. 

Intuition: don’t “waste” over-demanded nodes by matching them 
to perfectly matched nodes. 

I Proof is based on alternating and augmenting paths, similarly 
to Hall’s theorem. We skip the details. 
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Perfectly Matched Players 
What payoffs do we expect perfectly matched players to receive? 

Consider 1 seller linked to 1 buyer: this situation is called bilateral 
bargaining. 

Trade at any price p ∈ [0, 1] is a stable outcome. 

I Each player’s payoff is at least 0, which is what she could 
create on her own. 

I The players jointly receive payoff 1, which equals what they 
can create on their own. 

Similarly, any price p ∈ [0, 1] is a market-clearing price. 

Thus, general theories like competitive equilibrium or stability can 
predict that under-demanded players get payoff 0 and 
over-demanded players get payoff 1, but they do not predict 
anything about perfectly matched players’payoffs (other than that 
the effi cient value is created and split among them in some way). 
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Bilateral Bargaining: Remark 

The inability to predict what price will result from bilateral 
bargaining is a famous hole in standard economic theory, dating 
back to the 19th century where Francis Ysidro Edgeworth (one of 
the founders of formal economics) called it the “indeterminacy of 
contract.” 

I According to standard economic theory, in bilateral bargaining 
the price is indeterminate. 
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Bilateral Bargaining 

While classical economic theory cannot predict the price in bilateral 
bargaining, game theory models can, at least if we’re willing to 
make assumptions about the details of the “bargaining game” that 
the buyer and seller play. 

We consider two versions of the bargaining game: 

I Ultimatum bargaining, where one party makes a 
take-it-or-leave it offer to the other. 

I Alternating-offer bargaining, where the parties take turns 
making offers until they agree on a price. 

We will argue that alternating-offers bargaining is usually more 
realistic (and also doesn’t bake a huge asymmetry in who gets to 
make the offer), so that’s the version we’ll use in building our 
general theory of bargaining on networks. 15



Ultimatum Bargaining 
The ultimatum bargaining game is as follows: 

I First, the seller names a price p ∈ [0, 1]. 
I Then, the buyer says either Accept or Reject. 
I If he says Accept, the parties trade at price p: seller’s payoff is 
p, buyer’s payoff is 1 − p. 

I If he says Reject, the game ends and both parties get payoff 0. 

(Of course, there’s a symmetric version of the game where it’s the 
buyer who gets to make the take-it-or-leave-it offer.) 

Intuitively, what will happen in this game? 

I Arguing by backward induction (a key tool for solving 
dynamic games like this one), the buyer will accept any price 
p < 1. 

I Anticipating this, the seller will name a price “close” to 1. 
I Seller will get payoff ≈ 1, Buyer will get payoff ≈ 0. 
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Aside: Subgame-Perfect Equilibrium 
The main game-theoretic solution concept for dynamic games with 
complete information is called subgame-perfect equilibrium 
(SPE). 

It says that the strategy profile is a Nash equilibrium (mutual best 
responses) at the beginning of the game, and in addition remains a 
Nash equilibrium conditional on reaching any point in the game (or 
“subgame”). 

E.g. In ultimatum bargaining, this says that the seller must choose 
an optimal price given the buyer’s strategy (a function from p to 
{Accept,Reject}), and in addition the buyer’s strategy must be 
optimal for any price the seller might name (not just the one she 
actually names in equilibrium; this is required by subgame 
perfection because each price leads to a different subgame). 

We skip the formal definition of SPE and just use it in an intuitive 
way. 
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Ultimatum Bargaining 

Theorem 
The ultimatum bargaining game has a unique SPE. In it, Seller’s 
strategy is to offer p = 1, and Buyer’s strategy is to accept any 
price. 

Intuitive proof: by backward induction (which finds SPE since it 
finds best responses in each subgame), buyer accepts any price 
p < 1, so seller names p ≈ 1. 
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Ultimatum Bargaining (cntd.) 

More formal proof: (shows buyer also accepts when p = 1) 

I By “Nash in the subgame starting with B’s decision”, B must 
accept any p < 1. B can accept or reject if p exactly equals 1. 

I Clearly, it is a SPE for S to offer p = 1 and B to accept every 
p, including p = 1. 
(Neither player has a profitable deviation in any subgame.) 

I This is the only SPE, because if B’s strategy is to accept any 
p < 1 and reject p = 1 (or even reject it with positive 
probability), then S’s optimal action would be to offer “the 
largest p strictly less than 1,” which is impossible. 
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Ultimatum Bargaining: Aside 
The ultimatum game is one of the most widely studied games in 
experimental economics, where human subjects are put together in 
labs to play games. 

A typical result in these experiments is that splits are often close to 
50:50, with proposals more extreme than 70:30 typically rejected. 

There are many possible explanations for this pattern. 

I Perhaps the simplest: stakes in lab experiments are often 
small, and vengeance can be a powerful motivator. If you’re 
offered only $10 out of a $100 pot, may be worth $10 to you 
to “punish” the other player for making such a low offer. 

Reminder that real-world bargaining involves a richer set of 
considerations than those in our game-theoretic model. 

I Nonetheless, simple models are a useful ingredient for 
analyzing more complicated situations, like bargaining in 
networks. 
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Alternating-Offer Bargaining 

The assumption in ultimatum bargaining that the game ends if B 
rejects is usually unrealistic: in reality, wouldn’t B come back with 
a counter-offer, or wouldn’t S try again with another offer? 

Also, it’s very “unfair” that we only let one player make offers. 
To study the influence of network position on bargaining power, we 
should adopt a more equal bargaining procedure. 

Both of these problems are addressed by alternating-offer 
bargaining. 
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Alternating-Offer Bargaining 

I In even periods (t = 0, 2, 4, . . .), S offers a price p. Then B 
Accepts or Rejects. If B Accepts, they trade at price p and 
the game ends. If B Rejects, move to the next period. 

I In odd periods (t = 1, 3, 5, . . .), the roles are reversed: first B 
offers a price p, then S Accepts or Rejects. If S Accepts, they 
trade at price p and the game ends. If S Rejects, move to the 
next period. 

I If the game ends with trade at price p in period t, payoffs are 
δtS p for S, and δtB (1 − p) for B, where δS , δB ∈ (0, 1) are the 
players’discount factors (i.e. how patient they are). 

Note: if δS = δB = 0, we’d be back to ultimatum bargaining. 
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Alternating-Offer Bargaining 

With ultimatum bargaining, it was intuitively fairly clear that the 
outcome should be p = 1 following by Accept. 

With alternating-offers bargaining, it’s not at all obvious what 
happens in SPE, or even if the SPE is unique. 

A famous theorem due to Ariel Rubinstein (1982) says that there is 
indeed a unique SPE, and the resulting price depends on the 
players’discount factors and who gets to make the first offer in a 
natural way. 

23



Alternating-Offer Bargaining: Theorem 

Theorem 
The alternating-offers bargaining game has a unique SPE: S always 

1−δBoffers price pS = and accepts all prices greater or equal to1−δS δB 

pB = δS pS ; similarly, B always offers price pB and accepts all 
prices less than or equal to pS . 
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Alternating-Offer Bargaining: Remarks 
1−δBRecall: pS = , pB = δS pS1−δS δB 

I In the unique SPE, trade occurs in the first period at price pS . 
I If we fix δB and take δS → 1 (i.e. S is very patient), then 
pS , pB → 1. 
If we fix δS and take δB → 1 (i.e. B is very patient), then 
pS , pB → 0. 
Thus, being more patient than your opponent is an advantage 
in bargaining. 

1 δI If δS = δB , then pS = 1+δ and pB = 1+δ . 
When the players are equally patient, S gets a slight 
advantage from making the first offer. 

I If we then take δ → 1, we have pS , pB → 12 . 
When the players are equally patient and both very patient, 
they split the gains from trade equally. 
This reflects the fact that their bargaining positions are 
almost symmetric in this case. 
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Proof Sketch: Existence 
Let’s first argue that the proposed strategy profile is one SPE. 

Intuitively, when B makes an offer, he should offer the lowest price 
that S prefers to waiting one period and then offering pS (since 
this is S’s best alternative to accepting). That is, 

pB = δS pS . 

Similarly, when S makes an offer, she should offers the highest price 
that B prefers to waiting one period and then offering pB . That is, 

1 − pS = δB (1 − pB ) . 

Solving this system of equations gives 

1 − δB δS (1 − δB )pS = and pB = .
1 − δB δS 1 − δB δS 

as claimed. So, the proposed strategy profile is an SPE. 
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Proof Sketch: Uniqueness 

This SPE is the only one where players use “stationary” strategies 
that involve making the same price offer in every period and using 
the same threshold for accepting the opponent’s offer in every 
period. 

I By a similar logic as in the ultimatum game, each player’s 
offer must make the opponent indifferent between accepting 
and rejecting. 

I We just showed that pS and pB are the only pair of 
(stationary) offers that satisfy this property. 

In fact, this is the unique SPE even without the restriction to 
stationary strategies (so the theorem is true as stated). 

I That proof is slightly harder. We omit it. 
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Bargaining on General Networks 

Finally, we can put everything together to formulate an 
alternating-offers bargaining model where the following theorem 
holds: 

Theorem 
In every bipartite network of buyers and sellers, for every discount 
factor δ, there is an effi cient SPE in which under- and 
over-demanded players get payoffs 0 and 1 (respectively), while 
perfectly matched players get payoffs 1 or 1+ 

δ
δ , depending on1+δ 

whether they are on the side that offers first or second. 

I “Effi cient” means maximum total value is created: a maximal 
matching of agents trade immediately in period 0 (i.e. as 
many agents trade as possible, and no value is lost to delay). 

In the 5-node example, u1 = 1, u3 = u4 = 0, and u2 and u5 equal 

1+ 
1 

δ and 1+ 
δ

δ (in some order). 
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Alternating-Offers Bargaining in Networks 

The bargaining model we consider is the following generalization of 
alternating-offers bargaining: 

I In even periods, each S offers a price. Then each B says which 
of the offered prices he’s willing to accept (if any). 

I Now consider the subnetwork where two nodes are linked iff 
they are linked in the original network (i.e. are able to trade) 
and the S’s price is acceptable to the B. 

I Select an arbitrary maximal matching of this subnetwork. 
Agents in this subnetwork trade at the accepted price and exit 
the network. 

I In odd periods, the roles are reversed (i.e. B’s offer prices). 
I Game continues until everyone has traded. 

I If an S trades at price p in period t, gets payoff δt p. 
I If a B trades at price p in period t, gets payoff δt (1 − p). 29



Equilibrium 

Theorem 
In every bipartite network of buyers and sellers, for every discount 
factor δ, there is an effi cient SPE in which under- and 
over-demanded agents get payoffs 0 and 1 (respectively), while 
perfectly matched players get payoffs 1 or 1+ 

δ
δ , depending on1+δ 

whether they are on the side that offers first or second. 

Behavior in the SPE: 

I Over-demanded S’s offer p = 1, only accept p = 1. 
I Under-demanded B’s offer p = 1, accept any price. 
I Over-demanded B’s offer p = 0, only accept p = 0. 
I Under-demanded S’s offer p = 0, accept any price. 
I Perfectly matched S’s offer p = 1+ 

1 
δ accept any p ≥ δ 

1+δ . 

I Perfectly matched B’s offer p = 1+ 
δ

δ , accept any p ≤ 1+ 
1 

δ . 
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Intuition for the Theorem 
Consider an under-demanded buyer, i ∈ U. 

This buyer is supposed to accept price 1 in period 0. Does he have 
a profitable deviation? 
I Since i ∈ U, by definition, all his partners are over-demanded 
S’s. 

I They all offer p = 1. So the buyer doesn’t receive a better 
price offer in period 0. 

I Suppose the buyer rejects in period 0. 
I Since i ∈ U, there exists a maximal matching that doesn’t 
include this buyer. 

I It matches each over-demanded S to an under-demanded B. 
I Since in period 0 all over-demanded S’s offer p = 1 and all 
(other) under-demanded B’s accept any price, all 
over-demanded S’s will trade in period 0 even if the buyer 
we’re focusing on rejects. 

I Hence, the buyer will be isolated and receive payoff 0 starting 
in period 1. So there is no profitable deviation. 
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Intuition for the Theorem (cntd.) 

The argument for other under- or over-demanded agents is similar. 

For a perfectly matched agent: 

I By definition, she is not linked to any under-demanded agent. 
I Hence, her only hope is to trade with either an 
over-demanded agent or another perfectly matched agent. 

I Over-demanded agents are more demanding (S’s require 
p = 1; B’s require p = 0), so better to trade only with other 
perfectly matched agents. 

I If a perfectly matched player does not trade today, all other 
perfectly matched agents but one will trade, so the player who 
doesn’t trade will still be perfectly matched tomorrow. 

I Hence, among perfectly matched agents, the same strategies 
as in alternating-offers bargaining form a SPE, by the same 
argument. 32



Experimental Evidence 
This model has been tested in the lab with human subjects. 

The findings conform remarkably closely to the theory (at least for 
the small networks that were studied). 
I Usually a maximal matching of agents trade with very little 
delay (>90% of trades within first 2 rounds of offers). 

I Over-demanded agents do well, under-demanded agents do 
badly, perfectly matched agents get about 12 . 

One major difference from theory: payoffs for 
over-/under-demanded agents are not as extreme as predicted. 
I Over-demand agents get more like .8 or .9, under-demanded 
agents more like .05 or .1. 

However, given that experimental studies of ultimatum bargaining 
rarely show divisions more extreme than 70-30, this is already quite 
extreme. (Other models of bargaining on networks predict less 
extreme splits and thus fit the experimental data even better.) 
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Intermediation on Networks 
A topic closely related to bargaining on networks in 
intermediation on networks: trade on networks where the seller 
and buyers cannot trade directly, so the good must be re-sold 
through intermediaries. 

I Bargaining on networks: multiple buyers and sellers, a link 
means that two agents can directly trade a good, no 
possibility of re-selling. 

I Intermediation on networks: (usually) one seller and one 
buyer, not directly linked, good must be re-sold through 
intermediaries. 

Intermediation is important in many markets. 

I Financial markets 
I Agricultural markets 
I Markets for illegal goods (drugs, contraband, stolen goods, 
etc.) 
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Intermediation: Modeling Framework 

Directed network G , initial node s ∈ N with only out-links, final 
node b ∈ N with only in-links, all other nodes have both in-links 
and out-links, no cycles. 

I In each period t = 0, 1, 2 . . ., some node is the current owner 
of the good. 

I s is the initial owner. 

I Each period, current owner chooses a downstream neighbor, 
sells good to her at price determined by some bargaining 
process. 

I Can imagine different versions of the model depending on the 
bargaining process. 

I Once good reaches b, b consumes and receives utility 1. 
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Example: A Line Network 
Analyzing intermediation on arbitrary networks can be complicated, 
but some key ideas can be seen from considering the line network: 

s = i0 −→ i1 −→ i2 −→ . . . −→ in−1 −→ in = b 

Let vi be player i’s equilibrium payoff in the subgame where player 
i is the current owner of the good. 

Taking all the vi ’s as given, if i and i + 1 do not trade, they each 
get payoff 0; if they trade at price p, i gets p and i + 1 gets 
vi +1 − p. 

I Thus, bargaining between i and i + 1 is like bargaining over a 
surplus of size vi +1. 

We assume the bargaining process is such that this surplus is split 
vi +1equally: p = 2 . 

vi +1Therefore, the vi ’s must satisfy the recursive equation vi = 2 . 
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Line Network (cntd.) 
Since the good is worth 1 to the buyer, we have 

vn = 1, 
1 

vn−1 = , . . .
2
1 

vi = 
2n−i 

. 

Payoff for each player i is 

1 
ui = 

2n−i +1 
. 

The price of the good doubles at each step along the 
intermediation chain! 

I Downstream intermediaries get higher payoffs than upstream 
intermediaries, because moving the good one step closer to 
the buyer is more valuable when fewer intermediaries remain 
to take a cut of the profits. 
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Empirical Evidence 

A study by Olken and Barron (2009) finds empirical support for 
this theory in an unlikely place: trucking in Aceh, Indonesia. 

In Aceh, the main trucking route (the only big road) has a number 
of checkpoints and weigh stations between the two biggest cities. 

The toll collectors at the checkpoints are usually corrupt and 
accept bribes. 

Olken and Barron sent research assistants to ride along with 
dozens of truckers to record how much was paid in bribes. 
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Empirical Evidence (cntd.) 
Letting the truck pass is like passing on the good in the line 
example: the “good” (truck) gets one node closer to the node 
where it creates economic value. 

Theory predicts that bribes will be higher at checkpoints closer to 
the destination city. 
I This is exactly what Olken and Barron find. 

But could this be explained by other differences between the 
checkpoints, e.g. checkpoints closer to cities may be staffed by 
higher-ranking soldiers? 

No, because the same checkpoint gets different bribes depending 
on which way the truck is going! 
I For example, a checkpoint close to city 1 gets small bribes 
from trucks leaving city 1 and gets large bribes from trucks 
entering city 1. 

I This is strong evidence in favor of the theory. 
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Summary 

I Bargaining theory studies how agents share the economic 
value created by their transactions. 

I Stability says no subset of agents receives less total value than 
it could create on its own. This is compelling but often is not 
a very sharp prediction. 

I Game-theoretic models of bargaining make sharper predictions 
but depend on the details of how bargaining is modeled. 

I The Dulmage—Mendelsohn Decomposition tells us which 
nodes in a bargaining network are in strong, weak, or balanced 
positions in the network. In a simple bargaining model, this is 
the only network information that’s relevant for determining 
an agent’s payoff. 

I In intermediated markets, downstream intermediaries are in a 
stronger position than upstream intermediaries. 40
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