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Networked Markets 
We continue our study of how network phenomena affect economic 
interactions, now from the perspective of markets. 

Traditional economic theory assumes markets consist of a large 
number of participants who can all trade freely with each other. 

Many markets do work this way: financial markets, commodity 
markets, markets for relatively non-specialized labor. 

But in many other markets, only some agents can trade with each 
other, due to various factors. 
I Geography 
I Technological capability 
I Limited information 

Even when in principle all agents can trade with each other, many 
markets have a small number of participants, and buyers can have 
very heterogeneous valuations for different sellers’goods. 
I Housing market. 
I Labor markets for unique positions (CEO’s, NFL quarterbacks) 
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Networked Markets (cntd.) 
Markets where only some agents can (or want to) trade with 
others are more like networks than traditional economic markets. 
(Note: networks of “who can/wants to trade with whom” is a 
completely different issue than the “network effects”/externalities 
in markets that we studied last week.) 
This week, we’ll analyze several features of these “networked 
markets.” 
I What are competitive or market-clearing prices in a 
network of buyers and sellers, and what are the properties of 
the resulting competitive equilibrium? (Today) 

I If we view prices as being strategically determined by 
individual agents rather than competitive market forces, how 
does the network structure determine who has more 
bargaining power? (Wednesday) 

I How is bargaining power and the division of economic value 
determined in intermediated markets, where goods must 
pass through a network of intermediaries on their way from 
producers to final consumers? (Also Wednesday) 
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Matching Markets 
Today, we study competitive pricing in a network of buyers (I ) and 
sellers (J), with |I | = |J | (for simplicity). 

Make the simplifying assumption that each buyer wants to consume 
(at most) one good, and each seller has one good to sell. 

I Examples: housing markets (only want one house), labor 
markets for unique positions (only want one CEO or 
quarterback). 

Goods are heterogeneous: buyer i values seller j’s good at vij ≥ 0 
(and obtaining a second good has no value). 

Such a “unit demand/unit supply” environment is called a 
matching market (or an assignment game). Why? 

I Consider the bipartite graph of buyers and sellers. 
I An outcome of trade is a matching (which buyer obtains 
each seller’s good), together with a price paid for each good. 
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Matching Markets (cntd.) 
If buyer i buys seller j’s good at price pj , 

i’s payoff = vij − pj 
j’s payoff = pj 

Questions: 

1. Ignoring prices for a moment, what can we say about the 
optimal (total value-maximizing) way to assign goods to 
buyers? 

2. Does there always exist a vector of prices p = (pj )j ∈J that 
supports the optimal assignment as a “competitive 
equilibrium” (meaning that each buyer i prefers his assigned 
good j at price pj to any other good j 0 at price pj 0 )? 
Conversely, are the goods assigned optimally in every 
competitive equilibrium? 

3. How can we find the competitive equilibrium prices? 
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Aside: Matching Markets and Market Design 

The assignment game was introduced by Koopmans and Beckman 
(1957) and Shapley and Shubik (1972). 

Along with related allocation problems, it is a core model in the 
field of market design, where economists help design the rules of 
markets or mechanisms (e.g., matching mechanisms or auctions) 
to try to improve market functioning. 

I Compare to 2-sided matching models without money 
(Gale-Shapley 1962), assignment problems without money 
(Scarf-Shapley 1973). 

I We’ll learn more about auctions later in the course. For much 
more on market design (both theory and real-world 
applications), see 14.19. 
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Competitive Equilibrium: Definition 
Formally, a competitive equilibrium is a bijection M : I → J 
(which specifies the good j = M (i) consumed by each buyer i) 
and a price vector p = (pj )j ∈J such that, for each buyer i , if 
j = M (i) then 

vij − pj ≥ vij 0 − pj 0 for all j
0 ∈ J, and 

vij − pj ≥ 0. 

In economic terminology, 

I M is the equilibrium assignment (or allocation). 
I p is the market-clearing price vector. 
I The condition that M is a bijection (so each good is assigned 
to a single buyer) is the market-clearing condition. 

I The condition that each buyer prefers her assigned good to 
any other good at the market-clearing price vector p is the 
individual optimization condition. 
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Questions about Competitive Equilibrium 

Two central questions about competitive equilibrium: 

1. Is it effi cient– does it assign goods to buyers who value them 
the most? 

2. Does it always exist– is there actually an assignment and 
prices that satisfy the definition? 
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Effi ciency 
Forgetting about prices and individual optimization for the 
moment, we can define the total value generated by any bijection 
M : I → J as 

V (M) = ∑ viM (i ). 
i ∈I 

Since there are finitely many ways to assign the goods to the 
buyers, we can define the optimal total value 

V ∗ = max V (M) . 
M 

By definition, V ∗ is the maximum value that can be created by 
assigning goods to buyers in any way. It says nothing about how 
this assignment can be implemented (e.g. whether there’s any way 
to get the individual buyers and sellers to go along with it). 

I Note that the sellers don’t show up in the definition of V ∗ , 
since they don’t care how the goods are assigned. 
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Competitive Equilibrium: Effi ciency 

Even though V ∗ is defined without any reference to how the 
optimal assignment can be implemented, it turns out that a 
competitive equilibrium (if it exists) always attains value V ∗ . 

Theorem 
If (M, p) is a competitive equilibrium, then V (M) = V ∗ . 

The result that competitive equilibria are effi cient is a fundamental 
result in economics, generally known as the first welfare theorem. 

I Remark for economics students: The theorem on this slide 
is a bit different from the classical first welfare theorem, in 
that it assumes a particular kind of preferences (unit demand 
and linear utility in money) but establishes utilitarian 
effi ciency rather than only Pareto effi ciency. 
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Competitive Equilibrium: Effi ciency (cntd.) 

Theorem 
If (M, p) is a competitive equilibrium, then V (M) = V ∗ . 

Proof: 

I Since each buyer chooses optimally given prices p, we have 

M (i) ∈ argmax vij − pj for all i ∈ I . 
j 

I Therefore, given prices p, the matching M maximizes the sum 
of the buyers’payoffs over all matchings: � � 

M ∈ argmax ∑ viM 0 (i ) − pM 0(i ) . 
M 0 i ∈I 

I But the sum of all prices ∑i ∈I pM 0 (i ) doesn’t depend on the 
matching: it always equals ∑j ∈J pj . 

I So M ∈ argmaxM 0 ∑i ∈I viM 0 (i ). 
That is, M maximizes total value. 
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Competitive Equilibrium: Existence 
We have shown that, if a competitive equilibrium exists, it’s 
effi cient. 

But does a competitive equilibrium always exist? 

Not obvious: need to find a single price vector (pj )j ∈J that 
simultaneously causes all buyers to choose the “right” good. 

I One price vector must coordinate purchasing choices of all 
buyers. 

Nonetheless: 

Theorem 
There is always at least one competitive equilibrium. 

To prove this, we will relate the economic notion of competitive 
equilibrium to the graph-theoretic notion of a perfect matching. 
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Competitive Equilibrium and Perfect Matching 

A perfect matching in a graph G is a set of edges with no 
common vertices, such that each vertex is an endpoint of one edge. 

I That is, a matching of nodes to neighbors such that each 
node is matched exactly once. 

Note: in a bipartite graph between nodes i ∈ I and j ∈ J, with 
|I | = |J |, a perfect matching is a bijection M : I → J. 

We can rephrase the definition of a competitive equilibrium as a 
price vector p = (pj )j ∈J together with a perfect matching in the 
graph where there is a link between i and j if and only if j is a 
preferred-seller for i , meaning that 

vij − pj ≥ vij 0 − pj 0 for all j
0 ∈ J, and 

vij − pj ≥ 0. 13



A Subtlety 

At a market-clearing price vector, there can be ties in agents’ 
preferences, so a buyer i can have more than one preferred seller, 
and a seller j can be preferred by more than one buyer. 

I In this case, to find the equilibrium assignment M, agents 
need to break ties in the right way, so that we get a perfect 
matching in the entire preferred-seller network. 
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A Key Fact About Perfect Matchings 

Notation: given a graph G and a set of nodes S ⊆ N, denote the 
set of all neighbors of nodes in S by [

N (S) = Ni , 
i ∈S 

where Ni is the set of i’s neighbors. 

Our proof of existence of competitive equilibrium relies on the 
following important fact about perfect matchings in bipartite 
graphs: 

Theorem (Hall’s Marriage Theorem) 
A bipartite graph between nodes i ∈ I and j ∈ J, with |I | = |J |, 
has a perfect matching if and only if, for all S ⊆ I , we have 

|S | ≤ |N (S)| . 15



Hall’s Theorem 

A set S ⊆ I such that |S | > |N (S)| is called a constricted set. 

I Obviously, if there is a constricted set, there can’t be a perfect 
matching, as there’s no way to match everyone in S . 

I Hall’s theorem asserts that the converse is also true: if no set 
is constricted, then there is a perfect matching. 

I This should be somewhat surprising at first glance: the 
presence of a constricted set is an obvious reason why a 
perfect matching could fail to exist, but you might have 
thought that there could also be other, more complicated 
reasons why there may not be a perfect matching. 
Hall’s theorem says no– the presence of a constricted set is 
the only reason why a perfect matching may not exist. 

This is a fundamental theorem which we’ll use extensively and the 
proof is instructive, so we’ll prove it in the next couple slides. 
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Proof of Hall’s Theorem 

Suppose a perfect matching does not exist. 
We will find a constricted set. (This proves the theorem.) 

Let M be a maximal matching: a matching that matches as 
many nodes as possible. 

Since we assumed there’s no perfect matching, M is not perfect, 
so there’s some node i ∈ I that’s not matched by M. 

We’ll show that the set of nodes consisting of node i , together with 
all nodes in the set I that can be reached from i by a certain kind 
of path in G – called an alternating path– is a constricted set. 

We’ll see that the set must be constricted, because otherwise we 
could use the alternating path to find a better matching. 17



Alternating and Augmenting Paths 
Given a matching M and a node i that is not matched by M, an 
alternating path is a path that starts from node i , never repeats a 
node, and alternates between using links that are not in M and 
links that are in M. 
I The first link is not in M, since i is not matched by M. 
I Every node in an alternating path is matched by M (with 
another node in the path), except the initial node i and 
possibly the final node. 

An augmenting path is an alternating path where the final node 
is not matched by M. 
I Suppose we take an augmenting path and delete all the 
“even” links in the path and instead add all the “odd” links 
(leaving the rest of M unchanged). 

I This creates a new matching that matches all the nodes that 
were matched by M, plus the initial and final nodes. 

I It thus creates a new, “augmented” matching that matches 
more nodes. 
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Alternating Paths and Maximal Matchings 

Go back to the case where M is a maximal matching and i is node 
that’s not matched by M. 

Claim: Every alternating path starting from node i ends at a node 
that’s matched under M. 

Proof: If not, the alternating path is an augmenting path, so 
switching the even and odd links would give a matching that 
matches more nodes than M. 

We use this claim to find a constricted set. 
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Proof of Hall’s Theorem (cntd.) 

Define the set of nodes Z ⊆ J to be all nodes in J that can be 
reached from node i by any alternating path. 

I Similarly, define the set of nodes W ⊆ I to be all nodes in I 
that can be reached from node i by any alternating path 
(including i itself). 

We will show that W is a constricted set: that is, |N (W )| < |W |. 
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Proof of Hall’s Theorem (cntd.) 

Note that N (W ) ⊆ Z . 
(That is, if w is reachable from i by an alternating path and 
wj ∈ G , then j is reachable from i by an alternating path.) 

I Start with the alternating path from i to w , and add the link 
from w to j to get an alternating path from i to j . 

Now we show that |Z | ≤ |W | − 1. This completes the proof, as it 
implies that |N (W )| ≤ |W | − 1, so W is constricted. 

I Since alternating paths can’t end at unmatched nodes and 
every node in Z is reachable by an alternating path, every 
node in Z must be matched by M. 

I For every node in Z , its partner (in M) is reachable by an 
alternating path, and hence lies in W (and in fact lies in 
W \ {i}, since i is unmatched). 
Hence, |Z | ≤ |W | − 1. 
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Proof of Competitive Equilibrium Existence 

Now we can use Hall’s theorem to prove that there is always at 
least one competitive equilibrium. 

The proof is constructive: we give an algorithm that constructs a 
price vector p for which the preferred-seller graph has a perfect 
matching M. (So then (M, p) is a competitive equilibrium.) 

Intuitively, the algorithm is a kind of auction, where the relative 
prices of “over-demanded” goods increase over time until the 
market clears. 

I We’ll learn more about auctions later in the course. 

The algorithm assumes that all buyer valuations vij are whole 
numbers for simplicity, but this isn’t important. 22



Algorithm for Determining Market-Clearing Prices 

1. Initialize the price vector at pj = 0 for every good j . 

2. Given the current price vector p, construct the preferred-seller 
graph, and check whether there is a perfect matching. 

3. If there is, stop the algorithm– we’re done. 

4. If not, by Hall’s theorem, there is a constricted set of buyers 
S , with neighbors N (S). 
(Intuitively, the goods in N (S) are “over-demanded”– they 
are demanded by a set of buyers S with |S | > |N (S)|.) 

5. Increase the price of each good in N (S) by 1. 

6. If every price is greater than 0, reduce all prices by minj ∈J pj , 
so the lowest price is now equal to 0. (This will ensure prices 
stay below valuations, so buyer payoffs are non-negative.) 

7. Go back to Step 2 of the algorithm with the new price vector. 
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Analyzing the Algorithm 

Clearly, the algorithm can only stop at a competitive equilibrium. 

I Since the values vij are non-negative and the lowest price is 
always equal to 0, buyers always prefer assigned goods to not 
buying anything . 

Thus, to complete the proof that a competitive equilibrium exists, 
it suffi ces to prove that the algorithm must stop at some point 
(i.e., prices can’t cycle forever). 

24



Given the current price vector p, define the aspiration of buyer i
as the best payoff she can attain at the current prices:

max
j
vij − pj .

Similarly, define the aspiration of seller j as the best payoff he can
attain at the current prices, which is simply his current price, pj .

We show that the sum of all agents’aspirations (both buyers’and
sellers’) starts at a finite level and decreases by at least 1 with each
iteration.
I The first part is obvious: the sum of aspirations starts at

∑i∈I maxj vij , which is finite.

Proof that the Algorithm Stops 
To prove that the algorithm stops, we define a non-negative 
quantity that starts at a finite level and decreases by at least 1 
with each iteration of the algorithm. 
I Since it can only decrease finitely many times, the algorithm 
stops after finitely many iterations. 
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Proof that Aspirations Decrease with Each Iteration 
Aspirations change only at two steps of the algorithm: Step 5 
(where prices of all goods in N (S) increase by 1, for some 
constricted set S), and Step 6 (where all prices are reduced by the 
same non-negative constant). 

The change in Step 6 reduces the aspiration of each seller by the 
constant, and increases the aspiration of each buyer by the same 
constant. 
I This has no effect on the sum of everyone’s aspirations. 

The change in Step 5 increases the aspiration of each seller in the 
set N (S) by 1 and decreases the aspiration of each buyer in the 
set S by 1 (as the prices of all of their most-preferred goods 
increase by 1), and has no effect on anyone else’s aspiration. 
I The effect on the sum of everyone’s aspirations equals 
|N (S)| − |S |. Since S is a constricted set, this is at most −1. 

Thus, the sum of everyone’s aspirations decreases by at least 1 
with each iteration of the algorithm. This completes the proof. 

28



Intuition for the Last Step 

Intuitively, by gradually increasing the price of over-demanded 
goods, the algorithm gradually reduces the “aspirational” total 
value available to the agents, until it reaches the maximum 
actually-attainable value V ∗ , at which point the market clears. 

In economics, such a process of gradually increasing the prices of 
over-demanded goods is called tâtonnement. It captures how 
“market forces” can adjust prices to equate supply and demand. 
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Summary 

I Matching markets or assignment games capture situations 
where each seller sells a single (heterogeneous) good and each 
buyer wants at most one good. 

I A competitive equilibrium is an assignment of goods to 
buyers together with prices for all goods that lead each buyer 
to select her assigned good. 

I A competitive equilibrium always exists, and all competitive 
equilibria generate the maximum possible total value. 

I A competitive equilibrium can be viewed a perfect matching 
in the preferred-seller graph. Our proof of its existence 
takes this perspective and applies Hall’s theorem on perfect 
matchings in bipartite graphs. 
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