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Network Effects: Examples 

Many products are more desirable when more people use them. 

Older examples: 

I telephone 
I fax machine 

Contemporary examples: 

I operating systems 
I search engines 
I messaging apps 
I social media 
I video game platforms 
I credit cards 2



Examples (cntd.) 

For some of these, particularly valuable if your 
friends/acquaintances use them (“local network effects”). 

I telephone 
I fax machine 
I messaging apps 
I social media 
I video games 

For others, overall market share matters more than who uses them 
(classical “network effects”). 

I operating systems 
I search engines 
I credit cards 3



Network Effects 

A social or economic environment is said to exhibit network 
effects when the optimal action of an individual depends on some 
average of the actions of others. 

I E.g. a brand of computer or search engine becomes more 
desirable as it becomes more popular. 

I There are local network effects if what matters is an average 
of the actions of one’s neighbors only. 

I E.g. wanting to use the same messenging app as one’s friends. 

Thus, confusingly, the term “network effects” often doesn’t have 
much to do with mathematical networks per se: when networks 
show up explicitly, we usually have “local network effects.” 

I Nonetheless, the types of social interactions modeled as 
network effects fit naturally into this course, so we will study 
both “network effects” and “local network effects.” 
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Network Effects: Plan 

First cover some classic models of network effects, then local 
network effects. 

Key concepts: 

I Externalities: your action affects others’payoffs. 
I Complementarities: incentive to take an action depends on 
others’actions. 

I Tipping points: thresholds where optimal action switches. 
I Lock-in: actions of first few agents determine everyone’s 
optimal actions. 
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Markets with and without Network Effects 
Let’s start with a simple example of a market without network 
effects. 

Society consists of a large number of individuals i . 
I For example, take i ∈ [0, 1].

Each individual chooses between two products: si ∈ {0, 1} .

Individuals differ according to a “taste parameter” xi ∈ R+, which
measures one’s personal preference for product 1 over product 0. 
I Assume xi has some distribution F in the population, with 
continuous density f . 

Individual i’s payoff from choosing product si is 

u (si , xi ) = (xi − c) si ,

where c is the cost of choosing product 1 over product 0. 
I c is common to all players. 
E.g. it could be the price of the good. 6



Equilibrium without Network Effects 

Clearly, if individual i has xi > c , she will choose si = 1. 

I If xi < c , she will choose si = 0. 
I If xi = c , she’s indifferent. 
(Doesn’t matter what she chooses, as continuous density of f 
implies almost no one is exactly indifferent.) 

Theorem 
In the unique equilibrium, fraction S = 1 − F (c) of the population
chooses si = 1. 

I Individuals who value product 1 above its cost choose product 
1; the rest choose product 0. 

I This is just Econ 101. 
7



Introducing Network Effects 
Now suppose that si = 1 corresponds to choosing a new product, 
like Blu-Ray vs. DVD, or signing up to a new website, like 
Facebook vs. MySpace. 

Assume the utility of using the new product is greater when more 
people use it. 
I This is called a positive consumption externality or a 
positive network effect. 

I Similar to the Morris contagion model we saw earlier in the 
class, except now an individual cares about the share of the 
entire population using the new product. (So like the Morris 
model where the network is the complete graph.) 

Now i’s payoff from choosing si depends on the share of the 
population choosing si = 1, which we denote by S : let 

u (si , xi , S) = (xi h (S) − c) si ,

where h : [0, 1] → R is a continuous, increasing function capturing
the network effect. 8



Equilibrium with Network Effects 
Introducing externalities/network effects turns the market into a 
game: now each individual must take into account what others are 
doing when making her own decision. 

Since each individual is “small,” she cannot affect S , so she takes 
S as given when making her own decision. 

Hence, individual i chooses si = 1 iff 

c 
xi h (S) > c ⇐⇒ xi > .

h (S) 

The fraction of individuals choosing si = 1 must be �
c

S = 1 − F
h (S) 

9An equilibrium is therefore a value of S that solves this equation. 

( )



10

Equilibrium with Network Effects (cntd.)
Does an equilibrium always exist?

That is, is there always a solution to

︸︷S︷︸
share who adopt

= D (S)︸ ︷︷ ︸
share who want to adopt when S others adopt

,

where we have seen that

D (S) = 1− F
(

c
h (S)

)
.

theorem.

I Left-hand side is continuous in S , ranges from 0 to 1.
I Right-hand side is continuous in S (as h and F are continuous
functions) and is always in between 0 and 1.

I Hence, an equilibrium exists by the intermediate value



Equilibrium with Network Effects (cntd.) 
Is the equilibrium always unique? 

That is, is there always a unique solution to S = D (S)? 

I Left-hand side is the 45◦ line. 
I Right-hand side is increasing and non-linear in S . 
I Equilibria are the intersections. 

Can easily have multiple equilibria. 

I This is a key feature of markets with network effects. 
I Since I’m more willing to buy the product if others are buying 
it, there can often be both an equilibrium where few people 
buy and an equilibrium where many people buy. 

I Another instance of multiple equilibria in coordination-like 
game. 
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Example
Suppose h (S) = S for all S , and suppose F is the uniform
distribution.

Then (
c
) { c

S
,
}

D (S) = 1− F
h (S)

= 1−min 1 = max
{
1−

S
c
, 0
}
.

Hence, S = 0 is an equilibrium, and so is any solution to

S = 1−
S
c
.

This is a quadratic with solutions

S =
1±
√
1− 4c
2

.

If c < 1
4 , there are three equilibria: S = 0, and two equilibria with

S ∈ (0, 1). 12



Conditions for Multiple Equilibria 

In general, the equilibrium values of S are the ones that satisfy 
S = D (S) . 

Theorem 
Assuming that c > 0 and h (0) = 0 (so that S = 0 is always an 
equilibrium), there are multiple equilibria if and only there exists 
S > 0 such that S ≤ D (S) .
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Real vs. Pecuniary Externalities 

We have already discussed how network effects are a form of 
externality: each agent’s action directly affects the payoff of others. 

I Externalities turn markets into games. 

Aside: in a competitive market, there are always “pecuniary 
externalities,” meaning that each consumer’s demand plays a role 
in determining equilibrium prices. 

However, pecuniary externalities cannot lead to ineffi cient 
outcomes. This is the first welfare theorem of economics. 

14



Real vs. Pecuniary Externalities (cntd.) 
If you develop a taste for apples and start buying more of them, 
this drives up the price of apples, which can make me better-off or 
worse-off (depending on whether I’m an apple-seller or an 
apple-buyer.) 

I Either way, there’s no way to change our behavior to make us 
both better off. 

If you develop a taste for Apple iPhones but previously we were 
both using Android because we like using the same platform, and 
now neither of us wants to switch because the other is still using 
Android, this is an ineffi cient outcome caused by a real externality. 

I We’d both be better off is we changed our behavior. 

The difference between competitive markets and markets with 
network effects is that only the latter involves real externalities (as
opposed to only pecuniary externalities). 15



Externalities and Strategic Complements 

The assumption that h (S) is increasing says that we have positive 
externalities: taking si = 1 increases others’payoffs. 

This assumption also implies that the game is one of strategic 
complements: taking si = 1 increases others’incentives to take 
si = 1. 

Strategic complementarity is what leads to the possibility of 
multiple equilibria. 
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Welfare Comparisons 

Important fact: if there are multiple equilibria in a game with 
strategic complements and positive externalities, they can be 
Pareto-ranked. 

I Everyone is better-off in an equilibrium where more people 
take si = 1, as compared to one where fewer people take 
si = 1. 

More precisely, given a group of individuals I , a payoff vector 
0 0u = (ui )i ∈I is said to Pareto-dominate u = (ui )i ∈I if

ui ≥ u0 for all i ∈ Ii 

ui > u0 for some i ∈ I .i 

We also say that strategy profile s Pareto-dominates s 0 if u (s)
Pareto-dominates u (s 0). 
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Welfare Comparisons (cntd.) 

Theorem 
In our model of a market with network effects, if S and S 0 are both 
equilibrium levels of consumption of product 1 and S > S 0 , then S 
Pareto-dominates S 0 . 

Proof: 

I A type-xi consumer who purchases gets payoff xi h (S) − c . A
consumer who doesn’t purchase gets payoff 0. 

I When S increases, the purchase option gets better; the 
no-purchase option stays the same. 

I Since consumers with each type xi choose optimally, every 
consumer-type is at least weakly better-off when S is higher. 

I All consumer-types that purchase at the higher equilibrium 
consumption level are strictly better-off. 
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Comparative Statics 

In economic models, we are often interesting in comparative 
statics, which tell us how changes in the 
parameters/environment/network structure affect behavior. 

For example, how does an increase in the value of the product 
change the fraction of agents adopting it? 

In general, these questions can be hard to answer in models with 
multiple equilibria: if there’s some set of equilibria at one 
parameter value and another set at another value, how do we 
compare them? 

I (What does it mean for one set to be higher than another?) 

However, in games with strategic complements, we can often 
analyze comparative statics by considering the greatest equilibrium 
(or the smallest). 

19



Comparative Statics (cntd.) 

Theorem 
In our model of a market with network effects, suppose that xi
increases for a positive fraction of agents and remains the same for 
everyone else. Then the largest and smallest equilibrium values of 
S both weakly increase (i.e. either increase or stay the same). 

Intuition: 

I Holding S fixed, the fact that xi increases for some agents 
means that some of them may switch to taking si = 1. 
(The others do not change their actions.) 
This direct effect pushes S up. 

I Since S increases, this increases the network externality h (S). 
This makes more agents switch to si = 1. 
This indirect effect pushes S up even further. 
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Comparative Statics (cntd.) 

Theorem 
In our model of a market with network effects, suppose that xi
increases for a positive fraction of agents and remains the same for 
everyone else. Then the largest and smallest equilibrium values of 
S both weakly increase (i.e. either increase or stay the same). 

Visual/mathematical argument: 

I Recall that the equilibria are the intersections of the curve 
D (S) with the 45◦ line. 

I Increasing xi for a positive fraction of agents corresponds to 
shifting the curve D (S) up. 

I This always weakly increases its greatest and smallest 
intersection with the 45◦ line. 

Note: intermediate equilibria can shift the other way.

I Should we worry about this? 21



Stability and Tipping 

To understand whether we should worry about intermediate 
equilibria, we need to understand which equilibria are most likely to 
emerge when there are multiple equilibria. 

It’s useful here to think about the dynamics of how a market is 
likely to come to reach an equilibrium. 

If fraction S of the population is taking action 1, then fraction 
D (S) would like to take action 1 in response. 

Hence, if the population finds itself at a point where D (S) > S , 
the share taking action 1 will increase. 

Similarly, if D (S) < S , the share taking action 1 will decrease. 

This simple dynamic process is called best-response dynamics. 
22



Stability and Tipping (cntd.) 

Say that D (S) cross the 45◦ line at S from below if it’s below 
the 45◦ line for S 0 slightly below S , and above the 45◦ line for S 0

slightly above S . 

Equilibria where D (S) cross the 45◦ line from above are unstable 
(sometimes called tipping points). 

I If we slightly decrease S , then best-response dynamics will 
bring S further down. 

I If we slightly increase S , then best-response dynamics will 
bring S further up. 
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Stability and Tipping (cntd.) 

Theorem 
In our model of a market with network effects, the largest and 
smallest equilibrium values of S are both stable. 
Intermediate equilibrium values may be unstable. 

More generally, it can be shown that the stable equilibria are 
precisely those where the comparative static response to a “small” 
change in parameters goes the “right way” (i.e., the same way as 
the direct effect, as well as the greatest and smallest equilibria). 

I This is called the correspondence principle (due to Paul 
Samuelson): at a stable equilibrium, local comparative statics 
“correspond” to best-response dynamics. (They go the same 
way.) 
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A Related Idea: Lock-In 
Suppose we instead consider a dynamic version of the model, where 

I consumer arrive over time, 
I each consumer chooses si = 0 or 1 once-and-for-all when she 
arrives, 

I a consumer of type xi who enters the market at time t and 
chooses si gets payoff (xi h (St ) − c) si , where St is the share
of the population that has chosen si = 1 as of time t. 

Over time, St will converge to one of the stable equilibrium values. 

I Can’t converge to an unstable equilibrium, because it drifts 
away from this point whenever it is not exactly equal to it. 

I Converges somewhere by law of large numbers. 

Which stable equilibrium value is ultimately reached depends on 
whether early consumers tend to have high or low xi , which is a 
matter of chance. 25



Lock-In: Examples 

If we interpret 0 and 1 as two different products, this says that 
which product “wins” the market is determined by the random 
tastes of early movers. 

Examples: 

I QWERTY keyboard 

I VHS vs. Betamax 
I BitCoin vs. Ethereum 

I MySpace vs. Facebook? 
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Summary of Network Effects 

I An environment exhibits network effects if each individual’s 
optimal action depends on some average of others’actions. 

I Markets with network effects can have multiple equilibria. 
I In games with strategic complements and positive 
externalities, equilibria are Pareto-ranked: equilibria with 
higher actions are better for everyone. 

I In games with strategic complements, comparative statics for 
the largest and smallest equilibria are easy to analyze. For 
example, they move the “right way” in response to shifts in 
demand. 

I These equilibria are also stable under best-response dynamics. 
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Local Network Effects 

Our model of a market with network effects features strategic 
complementarity. 

I This gives the game a coordination aspect. 

A version of the model where each player cares about the share of 
her neighbors who take si = 1 rather than 0 coincides with the 
Morris contagion model we’ve already considered. 

I The Morris model is thus a model of local network effects. 

Today we study two other local network effect models: 

I residential choice 
I linear best-response games 
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Residential Choice 
One of the earliest and still most important models of local 
network effects was Schelling’s (1972) model of segregation. 

Schelling was writing at a time when the Jim Crow laws in the US 
South and other forms of organized, coercive segregation were 
breaking down, but racial segregation remained extremely high. 

There were (are) many possible explanations for high levels of 
racial segregation, but Schelling highlighted a force that’s 
particularly insidious and suggests that reducing segregation 
requires much more than eliminating blatant discrimination like 
Jim Crow/redlining: a slight individual preference for living near 
people like yourself can lead to dramatically high levels of 
equilibrium segregation due to “tipping point” effects. 
I Individuals don’t have to want to live in a large local majority 
(e.g. an overwhelmingly white neighborhood if white or an 
overwhelmingly black neighborhood if black) for extreme 
segregation to arise. It’s enough that they don’t want to be in 
a small local minority. 

29



Residential Choice (cntd.) 

Schelling considered the following simple model: 

I Agent of two types (race, income, education, political party 
affi liation, etc.) randomly arranged on a grid, with a few 
empty spaces. 

I An agent is satisfied if at least fraction p of her (up to 8) 
neighbors are of her own type, unsatisfied otherwise. 

I Each period, one unsatisfied agent is chosen at random. She 
moves to the closest empty space where she’ll be satisfied. 

I The process continues until everyone is satisfied (i.e., no one 
wants to move). 

30



Residential Choice (cntd.) 
What happens? 
I Suppose by chance one part of the grid starts out slightly 
majority black. 

I If p is relatively small, most whites in this area will be 
satisfied, but some (the ones who by chance have very few 
white neighbors) will be unsatisfied. 

I The unsatisfied whites move out, and blacks move in. 
I This makes more whites unsatisfied, so the process continues, 
potentially leading to extreme segregation. 

The model is hard to study analytically (a Markov chain on a very 
large state space), but experimentally Schelling found that if 
p = 0.5 then in equilibrium on average 80% of one’s neighbors are 
of one’s own type. 

Schelling’s segregation model was one of the first agent-based
models: computational models for simulating interactions among 
autonomous agents. (Useful complement to theoretical analysis.) 31



Tipping Points in the Real-World 
A 2008 paper by economists Card, Mas, and Rothstein (“Tipping 
Points and the Dynamics of Segregation”) empirically analyzes 
tipping-point behavior in residential segregation in the US from 
1970 to 2000. 

They ask how the share of minority residents in a census tract in 
1970 predicts the change in this share between 1970 and 2000. 
I They also ask how the relationship between share(1970) and 
share(2000)-share(1970) varies across different cities. 

They find that census tracts with <≈10% minorities in 1970
experienced a decrease in minority population share between 1970 
and 2000, while tracts with >≈10% minorities experienced an
increase in minority population share. 

They also find that different cities had different “tipping points” 
(range from ≈5% to ≈20%), and that this correlates with racial
attitudes among white residents, with cities with more “racially 
tolerant” whites having higher tipping points. 32



Game Theory of Local Network Effects: Linear Best 
Response Games 

The Morris contagion model and the Schelling segregation model 
are important examples of models of local network effects, based 
on different kinds of desires for “local coordination.” 

Is there a more general way to think about the game theory of 
local network effects that captures both local strategic 
complements (i.e. own optimal action is increasing in neighbors’ 
actions) and local strategic substitutes (i.e. own optimal action is 
decreasing in neighbors’actions)? 

In general, such problems can be very complicated. 

But an important and tractable special case arises when each 
individual’s optimal strategy (i.e. best response) is a linear 
function of her opponent’s actions. 

We consider first strategic substitutes, then complements. 33



Examples of Local Strategic Complements and Substitutes 
Aside: (local) strategic complements vs. substitutes in an 
important concept for understanding strategic interactions on 
networks. 

I Captures a key aspect of many strategic interactions: whether 
I want to increase or decrease my “activity level” when my 
neighbors do so. 

Strategic complements = “coordination game flavor.” 

I Spend more time on an app or using another technology when 
your friends do. 

I Engage more in various good or bad behaviors when your 
friends do (e.g., even committing crimes). 

Strategic substitutes = “anti-coordination game flavor.” 

I Work less hard on providing a public good when others pick 
up the slack (e.g., learning about new technologies, cleaning 
your dorm room, working on psets?). 34



Games on Networks with 1-Dimensional Actions 

n players on an undirected network with adjacency matrix g 

I gij ∈ {0, 1}, gij = 1 means i and j are linked.

Consider the static game where each player i takes a non-negative, 
real-valued action xi ≥ 0.

I Interpretation: xi is player i’s “activity level,” e.g. how much 
effort she exerts on some project. 

I Let x = (x1, . . . , xn ) denote a strategy profile. 
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Payoff Functions 

Assume payoff functions take the form 

where 

I bi (·) is a “benefit function,” assumed to be differentiable,
increasing, and concave. 

I δ is a parameter measuring the strength of strategic 
complements or substitutes. 

I We’ll see that δ < 0 is strategic complements, δ > 0 is 
strategic substitutes. 

I ci > 0 is a “cost parameter,” measuring the cost of effort. 
36

ui (x) = bi xi + δ ∑
j 6=i
gijxj) − cixi ,

)



 

Strategic Substitutes/Complements 

Why does δ > 0 correspond to strategic substitutes? 

First-order condition is 

Since bi is concave, b0 is decreasing, so as xj increases (for j suchi 
that gij = 1), xi decreases at rate δ. 

Similarly, δ < 0 corresponds to strategic complements. 

37

bi
′ xi + δ ∑︸ ︷︷j 6=i gijxj) ︸
marginal benefit of effort

= ︸︷ci︷︸
marginal cost of effort

)



 

Best Responses 
What is player i’s best response to opponents’actions x−i ?

First-order condition is 

∗Note: x is linear in xj (for j ∈ Ni ), and is increasing if δ < 0i 
(complements) and decreasing if δ > 0 (substitutes). 

38

bi
′ xi + δ ∑︸ ︷︷j 6=i gijxj

)
︸

marginal benefit of effort

= ︸︷ci︷︸
marginal cost of effort

Let x̄i be the solution to

bi
′ (x̄i ) = ci .

Then i’s best response to x−i is given by

xi
∗ =

{
x̄i − δ ∑j 6=i gijxj if δ ∑j 6=i gijxj ≤ x̄i

0 otherwise



Example: Local Public Goods (\delta=1)

I Suppose the network represents a small town. 
I Suppose xi measures how much effort agent i puts into 
maintaining her garden. 

I Suppose δ = 1 and x̄i = 1 for all i : each agent is willing to 
work on her garden up to the point where the sum of the 
nicenesses of her garden and her neighbors’gardens equals 1 
(beyond that point gardening still provides benefits, but the 
local neighborhood is already nice enough that the benefits 
are not worth the cost of effort). 

I A (pure-strategy) Nash equilibrium is a vector x such that, for 
all i , xi + ∑j 6=i gij xj = 1.

This is a leading special case of strategic substitutes with some 
nice features, so we’ll spend a few minutes on it. 39



Local Public Goods (cntd.) 

What do PSNE look like in this model? 

One special case: each agent i takes either xi = 0 or xi = 1. 

I Each agent either works hard enough to beautify the whole 
local neighborhood by herself, or completely slacks off. 

I Call such an equilibrium specialized. 

Note: it can be shown that only specialized equilibria can be 
stable under best-response dynamics. 

I Intuition: if two neighbors are both taking actions strictly in 
between 0 and 1, then if one of them slightly increases her 
action, the other will decrease his action, so the first one will 
increase her action further, etc. 

40



Local Public Goods (cntd.) 

What do specialized equilibria look like? 

It turns out they can be related to the graph-theoretic concept of a 
maximal independent set. 

A set of nodes S ⊆ N in a network is a maximal independent set
if no two nodes in S are linked to each other, and in addition every 
node not in S is linked to at least one node in S . 

E.g. In a star network, there are exactly two maximal independent
sets. What are they?

41



Local Public Goods (cntd.) 

Theorem 
For any S ⊆ N, there is a specialized equilibrium where everyone in
S takes xi = 1 and everyone else takes xi = 0 if and only if S is a 
maximal independent set. 
In particular, a specialized equilibrium always exists. 

Proof: 

I If everyone else takes action xj ∈ {0, 1}, player i’s optimal
action is xi = 1 if she’s not linked to anyone who takes 
xj = 1, and is xi = 0 if she is. 

I Hence, S corresponds to a specialized equilibrium iff everyone 
in S is not linked to anyone else in S (so 1 is optimal for 
agents in S), and everyone else is linked to someone in S (so 
0 is optimal for agents outside S). 

I This is precisely the definition of a maximal independent set. 
42



\delta<1
When δ < 1, finding equilibria is somewhat more challenging, but 
it still just involves solving a relatively simple system of linear 
equations. 

E.g. consider a star network, with one center node and 3 periphery
nodes.
I It’s a PSNE for the center to play xC > 0 and the peripheral 
agents to all play xP > 0 if and only if 

xC + 3δxP = 1 

xP + δxC = 1 

I It’s a PSNE for the center to play xC = 0 and the peripheral 
agents to all play xP > 0 if and only if 

3δxP ≥ 1

xP = 1 

I There is never a PSNE where the peripheral agents play 
xP = 0. (Why not?) 43



Finding all PSNE 

In general, to find all the PSNE, 

1. Consider separately each possible set of players who could
take xi > 0.

2. For each such set, see if there is indeed an equilibrium where
exactly this set takes xi > 0 by solving the resulting system of
linear equations, checking that all elements of the solution are
positive, and finally checking that it is a best response for
everyone else to take xi = 0.

44



Linear-Quadratic Payoffs 
A closely related linear best-response game arises when players 
have linear-quadratic payoffs: 

xi xi − δ ∑ 

xi 

¯ 

¯ 

1 2ui (x) = gij xi xj −
i ,j 

xi2 

where now is an arbitrary constant. 

The first-order condition is 

¯ 

xi − δ ∑
j 6=i

Hence, each player i has exactly the same best response function 
as before: 

¯ 

xi

xi = gij xj . 

=i gij xj if δ ∑j 6=i gij xj ≤xi − δ ∑j∗ 6 ¯ 
x = i 0 otherwise 

45
This implies that the equilibria of this game are identical to those 
of the previous one. 

{



Connection to Potential Games 
It turns out that the linear-quadratic game is a potential game, 
with potential function � � 

2φ (x) = ∑ x̄i xi − 
1 
xi − 

1 
δ ∑ gij xi xj2 2i i ,j 

I This is the sum of everyone’s payoffs, but with the externality 
term weighted by 12 . 

To see that this is indeed a potential function, take the first-order 
condition for maximizing the potential with respect to xi : 

xi = x̄i − δ ∑ gij xj .
j 6=i 

I Same as first-order condition for xi to be optimal for player i . 
I Note: we had to weight the externality term by 1 because it2 
shows up once for (i , j) and once for (j , i). 
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Connection to Potential Games (cntd.) 

As we saw last week, being a potential game is a useful property. 

I Implies that a PSNE exists. Hence, every linear best-response 
game has a PSNE. 

I If can also be used to give conditions for other properties, like 
uniqueness and stability of PSNE. We skip these results. 
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Strategic Complements 
Last topic: linear-quadratic games with strategic complements. 

Same setup as before, but now payoff function is 

2ui (x) = xi + δ ∑ gij xi xj − 
1 
xi .2j 6=i 

I We have just set the x̄i ’s equal to 1 and flipped the sign on 
the externality term. 

First-order condition for xi : 

xi = 1 + δ ∑ gij xj
j 6=i

I Each player wants to do 1 unit of activity “by themself,” plus 
another δ units for each unit of activity of their neighbors. 

48



Equilibrium with Strategic Complements 
First-order conditions: 

xi = 1 + δ ∑ gij xj
j 6=i

Stacking this equation for all i ∈ N yields

x = 1 + δGx , 

where G is the adjacency matrix and 1 is the vector of 1’s. 

To express the vector of equilibrium actions in closed form, re-write 
this as 

(I − δG ) x = 1.

If the matrix (I − δG ) is invertible, can solve in closed form as

x = (I − δG )−1 1.

I Leontief inverse again! 
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Equilibrium and Katz-Bonacich Centrality 

Recall from Lecture 3 that the Katz-Bonacich centrality of node i 
in an undirected network G (one of the ways we discussed of 
measuring the importance or “prestige” of a node) is given by 

1
Ci = 1 + gij Cj ,

λ ∑ 
j 6=i

or in vector form 
1

C = 1 + GC .
λ 

Interpretation: each node receives 1 unit of prestige for free, plus 
another 1/λ units for each unit of prestige of their neighbors. 
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Equilibrium and Katz-Bonacich Centrality (cntd.) 
Katz-Bonacich centrality: 

1
C = 1 + GC .

λ 

1Letting λ = δ , this is exactly the equation for the vector of
equilibrium actions in a linear-quadratic game with strategic 
complements: 

x = 1 + δGx . 

Thus, a player’s equilibrium action is the same as their 
Katz-Bonacich centrality! 

I Your action in the game is determined precisely by how 
“central” you are in the network. 

I Centrality and equilibrium actions are perfectly correlated: 
more central players take higher actions. 51



Explanation 

Katz-Bonacich centrality: each node receives 1 unit of prestige for 
free, plus another 1/λ units for each unit of prestige of their 
neighbors. 

Equilibrium actions: each player does 1 unit of activity “by 
themself,” plus another δ units for each unit of activity of their 
neighbors. 

This makes it obvious that Katz-Bonacich centrality and 
equilibrium actions are measuring the same thing. 
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Summary of Local Network Effects 

I Local network effects can explain phenomena with both 
spatial and economic aspects, like segregation and local public 
good provision. 

I The Schelling segregation model shows that fairly mild 
homophily can sometimes lead to extreme segregation. 

I Linear best-response games are a tractable way to model local 
strategic substitutes or complements, with connections to 
both potential games and centrality measures. 
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