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Game Theory 

Second half of the course considers social/economic networks 
where individuals make decisions strategically. 

I This means that each individual’s optimal choice depends on 
what others are doing. 

I We already saw some examples: behavioral SIR model, Morris 
contagion model. 

I More examples: choosing a route, adopting a new technology, 
pricing/bargaining/bidding, sharing or learning from a piece of 
information. 

Such situations are formally modeled as games: that is, 
multi-person decision problems. 

The analysis of games is called game theory. 2



Today: Static Games of Complete Information 

Today’s lecture provides an introduction to game theory, focused 
on the simplest type of games: static games of complete 
information. 

I “Static” means game is played all at once, not over time. 
I “Complete information” means there is no uncertainty or 
private information in the game. 

Coming lectures cover network applications of this simple class of 
games. 

We consider more complex games (dynamic, incomplete 
information) later in the course. 
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Games 

A game consists of 

1. A set N = {1, . . . , n} of players. 
I Who is playing the game. 
I In network models, often each player is a node in the network. 

2. A strategy set Si for each player i ∈ N. 
I The set of options available to each player. 
I For example, Si = {0, 1} means each player can choose action 
0 or action 1. 

3. A payoff function ui : S1 × . . . × Sn → R for each player 
i ∈ N. 

I Each player cares about what she does and what everyone else 
does. 
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Strategy Profiles 
I We write S = S1 × . . . × Sn . 
I An element s = (s1, . . . , sn ) ∈ S is called a strategy profile. 

I Each player’s payoff ui (s) depends on the entire strategy 
profile. 

I Ex. your payoff from using technology 1 depends on who else 
uses technology 1. 

I We write s−i = (s1, . . . , si −1, si +1, . . . , sn ) for a vector of 
strategies for everyone except player i , and we write 
(si , s−i ) = (s1, . . . , si −1, si , si +1, . . . , sn ) . 

I Since player i cannot control the other players’strategies, she 
takes s−i as given, and chooses her own strategy si to 
maximize her payoff ui (si , s−i ) . 

I The set of players other than player i is called player i’s 
opponents. 

I This does not mean they try to “beat” player i . Every player 
tries to maximize her own payoff. This is not very restictive, 
because i’s payoff function should already account for any 
altruism or spite that i feels towards j . 
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Example: The Prisoner’s Dilemma 

I Two criminals have been arrested and are held in separate 
cells. 

I Each criminal can either cooperate with the other criminal by 
keeping quiet, or defect by helping the police. 

I If both cooperate, they each get 1 year in prison. 
I If both defect, they each get 2 years in prison. 
I If one cooperates and the other defects, the one who 
cooperates gets 3 years in prison, and the one who defects 
gets 0 years. 
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The Prisoner’s Dilemma (cntd.) 

With the normalization 

payoff = 3 − (number of years in prison) , 

the game is given by 

I N = {1, 2} 
I S1 = S2 = {C , D} 
I u1 (C , C ) = u2 (C , C ) = 2 
I u1 (D, D) = u2 (D, D) = 1 
I u1 (C , D) = u2 (D, C ) = 0 
I u1 (D, C ) = u2 (C , D) = 3 
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Payoff Matrix Representation 

In 2-player games with a small number of strategies for each 
player, we can represent the game as a payoff matrix with player 
1’s strategies in the rows, player 2’s strategies in the columns, and 
the payoff pairs (u1, u2 ) filling out the matrix. 

For the prisoner’s dilemma, the payoff matrix is 

C D 
C 2,2 0,3 
D 3,0 1,1 
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More Examples 
Two children in a house must go Upstairs or Downstairs 
I If they like being together, we have a coordination game, 
with payoff matrix 

U D 
U 1,1 0,0 
D 0,0 1,1 

I If they like being apart, we have an anti-coordination game, 
with payoff matrix 

U D 
U 0,0 1,1 
D 1,1 0,0 

I If player 1 likes being with player 2 but player 2 likes avoiding 
player 1, we have a hide-and-seek game (also called 
matching pennies), with payoff matrix 
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U 1,0 0,1 
D 0,1 1,0 



Solution Concepts for Games 

What do we expect to happen when a game is played? 

I Related question: how should it be played? 

An answer to these questions is a prediction/prescription about 
how games will/should be played. 

I This is called a solution concept. 
I There are different solution concepts. We will focus on the 
important and most widely applied ones. A game theory 
course would spend more time discussing alternatives. 
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Dominant/Dominated Strategies 
Almost all solution concepts predict that, if a player has a strategy 
that’s always uniquely optimal (no matter what her opponents 
play), she will play that strategy. 
I Similarly, if a player has a strategy that’s never optimal, she 
will not play that strategy. 

A strategy si ∈ Si for player i is strictly dominant if, for every
0 0alternative strategy s ∈ Si , we have ui (si , s−i ) > ui (si , s−i ) fori 

all s−i ∈ S−i . 
I A player should take a strictly dominant strategy regardless of 
what others do. 

A strategy si ∈ Si for player i is strictly dominated if there exists
0 0an alternative strategy si ∈ Si such that ui (si , s−i ) < ui (si , s−i ) 

for all s−i ∈ S−i . 
I A player should never take a strictly dominated strategy 
regardless of what others do. 

I If there exists a strictly dominant strategy, then every other 
strategy is strictly dominated by it. 
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Example: Prisoner’s Dilemma 

C D 
C 2,2 0,3 
D 3,0 1,1 

Is there a strictly dominant strategy? What is it? 
I For each player, D is the unique optimal action regardless of 
what other do. 

I Thus, game theory (or really just individual optimization) 
predicts that the outcome of the game will be (D, D). 

I Note: if the players could jointly agree to play (C , C ), they 
would both be better off. 

I But (C , C ) is not the game-theoretic prediction, because it is 
not a stable outcome: an agreement to play (C , C ) would not 
be credible, because each player has an incentive deviate to D. 

I The prisoner’s dilemma thus demonstrates a conflict between 
individual optimization and social optimality. 
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Possible Objections to this Prediction 
I What if the players dislike hurting each other, e.g. they are 
altruistic? 

I Remember that a player’s payoff is, by definition, what she 
maximizes. 

I The entries in the payoff matrix must already take into 
account motivations such as altruism. They are not only 
“material payoffs.” 

I In real-world applications of game theory, we must sometimes 
be careful in thinking about how to account for non-material 
payoffs. 

I Couldn’t the players support the play of (C , C ) via some 
threatened punishment if there is a deviation to D? 

I We will see later in the course that this is indeed possible in 
richer settings, such as if the game is played repeatedly. 

I But if we specify that the whole game is just the (static)
prisoner’s dilemma, such punishments are not possible. 
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Example: Coordination Game 

U D 
U 1,1 0,0 
D 0,0 1,1 

Is there a strictly dominant strategy? What is it? 

I The prisoner’s dilemma is unusual in having strictly dominant 
strategies. 

I The more typical case (the one where game theory is really 
needed, as opposed to just individual optimization) is when a 
player’s optimal action does depend on what everyone else 
does. 

I What is our prediction/prescription for how the game 
will/should be played when no strategy is strictly dominant? 
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Nash Equilibrium 
The simplest and most widely applied prediction is that the players 
will play a Nash equilibrium. 

I This simply means that each player plays optimally, taking as 
given what everyone else is doing. 

Formally, a pure-strategy Nash Equilibrium (PSNE) is a 
∗strategy profile s ∈ S such that

∗ ∗ ∗ ui (si , s−i ) ≥ ui (si , s−i ) for all si ∈ Si , i ∈ N.

A PSNE is a stable outcome: no player has an incentive to 
unilaterally change her strategy (or “deviate”). 

I The words “pure-strategy” distinguish this definition from a 
more general version of NE that we’ll see later in this lecture. 

I If any player i has a strictly dominant strategy, she must play 
that strategy in every PSNE. 
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Best Responses 

One more useful piece of terminology: given the opponents’ 
strategies s−i , a “best response” for player i is an optimal action
against s−i .

I Formally, si is a best response to s−i if
0 0ui (si , s−i ) ≥ ui (si , s−i ) for all s ∈ Si .i 

Note that a PSNE is simply a strategy profile where each player is 
playing a best response. 

I To check whether a strategy profile is a PSNE: for each player 
separately, hold fix the other players’strategies and see if that 
player is playing a best response. 
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Prisoner’s Dilemma Again (cntd.) 

C D 
C 2,2 0,3 
D 3,0 1,1 

We can also check that (D, D) in a PSNE directly from the 
definition: for each player, if the opponent is playing D, then D is 
a best response. 

I To check this, we must check that for each player 
u (D, D) ≥ u (C , D).

I The fact that u (D, C ) > u (C , C ) is relevant for showing that 
D is a strictly dominant strategy, but it is not relevant for 
showing that (D, D) is a PSNE. 
(Since for Nash equilibrium we only consider a player’s 
incentives holding everyone else’s strategy fixed.) 17



Coordination Game Again 

What are the PSNE in the coordination game? 

U D 
U 1,1 0,0 
D 0,0 1,1 

I (U, U) is a PSNE: if 1 is playing U, 2’s best response is U 
(and vice versa) 

I (D, D) is also a PSNE 

I (U, D) is not a PSNE: if 1 is playing U, 2’s best response is U 

I (D, U) is also not a PSNE 
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Comment: Morris Contagion Model 

The Morris contagion model we studied last week is simply the 
coordination game played on a network, where each player wants 
to coordinate with as many of her neighbors as possible. 

The “equilibrium” concept we studied was precisely the PSNE of 
this game. 

Exercise: Go back to the lecture notes on the Morris model and 
make sure you understand this connection. 
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Hide-and-Seek 

U D 
U 1,0 0,1 
D 0,1 1,0 

What are the PSNE? 

I (U, U) is not a PSNE: 2 will deviate to D 

I (U, D) is not a PSNE: 1 will deviate to D 

I (D, D) is not a PSNE: 2 will deviate to U 

I (D, U) is not a PSNE: 1 will deviate to U 

Uh-oh. 
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What Now? 

U D 
U 1,0 0,1 
D 0,1 1,0 

What do we expect to happen in hide-and-seek? 

I The prediction that the players will play any one of the four 
pure-strategy profiles 100% of the time is not a good 
prediction, because none of these are stable outcomes. 
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I This is the unique “mixed-strategy Nash equilibrium”.

What Now? (cntd.) 

U D 
U 1,0 0,1 
D 0,1 1,0 

Instead, let’s try to predict what fraction of the time each player 
will play each action. 
I A prediction that player 1 will play U strictly more than 1/2 
the time will not come true. 

I If player 1 plays U more than 1/2 the time, player 2 will play 
D 100% of the time. 

I But then player 1 should play D 100% of the time, and never 
play U! 

I Similarly, a prediction that player 1 will play D strictly more 
than 1/2 the time will not come true either, and similarly for 
player 2. 

I The unique stable prediction is that each player will play each 
action exactly 50% of the time. 
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What Now? (cntd.) 

U D 
U 1,0 0,1 
D 0,1 1,0 

Instead, let’s try to predict what fraction of the time each player 
will play each action. 
I A prediction that player 1 will play U strictly more than 1/2 
the time will not come true. 

I If player 1 plays U more than 1/2 the time, player 2 will play 
D 100% of the time. 

I But then player 1 should play D 100% of the time, and never 
play U! 

I Similarly, a prediction that player 1 will play D strictly more 
than 1/2 the time will not come true either, and similarly for 
player 2. 

I The unique stable prediction is that each player will play each 
action exactly 50% of the time. 

I This is the unique “mixed-strategy Nash equilibrium”. 
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Mixed Strategies 
A mixed strategy σi for player i is a probability distribution over 
Si . 
I Simplest interpretation: player i flips a coin or spins a roulette 
wheel before choosing her action. 

I There are also other, more realistic ways of interpreting mixed 
strategies. We will mention them later. 

Let Σi denote i’s set of mixed strategies, with Σ = Σ1 × . . . × Σn .
I It is assumed that any players who use mixed strategies must 
randomize independently. 

A player i’s payoff at a mixed strategy profile σ = (σ1, . . . , σn ) is 
simply her expected payoff under independent randomization: 

24

ui (σ) = ∑
s∈S

Prσ (s) ui (s)

= ∑
n

∏
(s1,...,sn)∈S j=1

σj (sj )) ui (s1, . . . , sn) .

)



Hide-and-Seek Again

U D
U 1,0 0,1
D 0,1 1,0

(What a(re the pa)yoffs at ixed ))strategy profile
σ1 =

1
2U,

1
2D , σ2 =

(m1
2

1
2U, D ?

(What are the pa(yoffs at xed strategy profile
1
2

1
2U, D
)mi)

σ1 = U, σ2 = ?

(r(What a e the pa)yoffs at ixed ))strategy profile
σ1 =

2
3U,

1
3D , σ2 =

(m1
3

2
3U, D ?
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Mixed-Strategy Nash Equilibrium 

Recall that a pure-strategy Nash Equilibrium (PSNE) is a 
∗strategy profile s ∈ S such that

∗ ∗ ∗ ui (si , s−i ) ≥ ui (si , s−i ) for all si ∈ Si , i ∈ N.

I A PSNE is a pure-strategy profile where every player is playing 
a best response. 

Similarly, a mixed-strategy Nash Equilibrium (NE) is a strategy 
profile σ∗ ∈ Σ such that

ui (σi 
∗ , σ∗−i ) ≥ ui (σi , σ∗−i ) for all σi ∈ Σi , i ∈ N.

I A NE is a (possibly mixed) strategy profile where every player 
is playing a best response. 26



Verifying Mixed NE 
Even with only two pure strategies, there are infinitely many mixed 
strategies. 

How can we check that none of them does better than σ∗ i ?

Fortunately, it suffi ces to check that there is no pure strategy that 
does better than σ∗ i .

I If some mixed strategy σi is strictly better than σi 
∗ , then at

least one of the pure strategies in its support must also do 
strictly better than σi 

∗ .
(Otherwise, the expected payoff from σi could not be higher 
than that from σi 

∗.)

Theorem 
σ∗ is a NE if and only if 

ui (σi 
∗ , σ∗−i ) ≥ ui (si , σ−

∗ 
i ) for all si ∈ Si , i ∈ N.
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Hide-and-Seek Again

U D
U 1,0 0,1
D 0,1 1,0

Find all the NE (pure and mixed).

We know there aren’t any pure-strategy NE.

Let’s prove that σ1 =
1
2U,

1
2D

( ( )
, σ2 =

( 1
2

1
2U, D
))
is a

mixed-strategy NE.

I When one player plays
( 1
2

1
2U, D
)
, the other player’s expected

payoff is 12 for any strategy she might )play.
I n partic ar, for each player,

( 1
2U,

1
2D is a best response toI( 1

2
1
2U, D
ul)
.



Hide-and-Seek (cntd.)

U D
U 1,0 0,1
D 0,1 1,0

Let’s prove that
(
σ1 =

( 1
2

1
2U, D
)
, σ2 =

( 1
2

1
2U, D
))
is the only

mixed-strategy NE.

Suppose σ is a NE.
Let σi (a) be the probability that player i takes action a.
I If σ1 (U) > σ1 (D), then 2’s unique best response is D, so
(since σ is a NE) player 2 must be playing D.

1
2

1
2

1
2

1
2

But then 1 would deviate to D.
I If σ1 (U) < σ1 (D), then 2’s unique best response is U, so
player 2 must be playing U. But then 1 would deviate to U.

I Hence, in any NE we must have σ1 (U) = σ1 (D), and
symmetrically σ2 (U)(= σ2 ((D). ) ( ))

I In other words, only σ1 = U, D , σ2 = U, D can
be a NE. 29



Coordination Game Again

U D
U 1, 1 0, 0
D 0, 0 1, 1

We saw this game has two PSNE: (U,U) and (D,D).

2
1
2

1
2

1
2

( )
It also has a mixed NE: 1U + D, U + D .

(a1
2

1
2 2

1
2

I (This is more )compact (w1ay to )write)
σ1 = U, D , σ2 = U, D .

Exercise: Prove that these three are the only NE in the
coordination game.

Challenging Exercise: Can there be mixed NE in the Morris model
(i.e. coordination game on a network)? What do they look like?
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A Theorem 

A game is finite if each player’s strategy set Si is finite. 

Theorem 
Every finite game has a NE (allowing mixed NE). 

This is called the Nash existence theorem. 
(The theorem that won John Nash the Nobel Prize in Economics.) 

I Proof is not too hard but beyond our scope. 
I This is a very important theorem, as it ensures that NE is a 
usable solution concept for most models we consider. 

I The theorem extends to some classes of infinite games but not 
all infinite games: for example, consider the game where each 
player names an integer, and the player who names the 
greatest integer wins $1. 31



Summary 

I We represent multi-person decision problems as games. 
I The basic prediction/“solution”of a game is Nash equilibrium. 
I A NE is a stable outcome of the game, where no player has a 
profitable deviation. 

I Some games have only pure-strategy NE, some have only 
mixed-strategy NE, and some have both kinds. 

I Every finite game has at least one NE. 
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