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Strategic Aspects of Diffusion and Contagion 

Diffusion processes covered so far have been “mechanical.” 

I The process runs on its own without any interventions by 
outsiders or strategic decisions by the individuals/nodes. 

In reality, interventions and strategic decisions play key roles in 
many diffusion processes. 

I Social distancing, lockdowns, or vaccinations to slow or stop 
a pandemic. 

I Advertising or “seeding” to speed up adoption of a new 
product or technology. 

I Individual decisions about whether to adopt a product or 
technology based on what one’s neighbors are doing. 
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Plan 

1. Interventions to hinder diffusion: targeted removal, 
endogenous activity (“social distancing”). 

2. Interventions to help diffusion: optimal seeding. 

3. Strategic contagion: spread of coordination behaviors. 
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Hindering Diffusion: Random Node Removal 

As we’ve seen, in the ER or SIR model, randomly vaccinating 
fraction π of the population reduces the expected number of 
meetings with unvaccinated individuals to R0 (1 − π). 

This reduces the share of unvaccinated people who ever get sick 
(i.e., the size of the giant component) to the solution to 

−R0 (1−π)R (∞)R (∞) = 1 − e . 

I The total share of people who ever get sick is (1 − π) R (∞). 
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Hindering Diffusion: Targeted Node Removal 

Targeted removal can do even better. 

A simple model: removing fraction π of the population with the 
highest degrees. 

This reduces the share of people who ever get sick by more than 
randomly removing the same fraction. 

How much greater the reduction is depends on the degree 
distribution. 

We’ll skip the calculation, but in general the more heterogeneous is 
the degree distribution, the greater the gain from removing the 
highest-degree nodes rather than random nodes. 

This difference is especially important for scale-free graphs 
(P (d) = cd−γ), which have very skewed degree distributions. 
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Application: Is the Internet Robust? 
Recall that web links are distributed approximately power-law with 
γ < 3 (most estimates say γ ∈ (2.1, 2.7)). 

We have seen that scale-free networks are robust to random node 
removal: randomly remove 99% of the links and there will still be a 
giant component (i.e., the contagion threshold is π∗ = 1). 

I This is a good model for individuals who happen to be 
immune to a virus, or for webpages that randomly go down. 

However, the presence of the giant component comes from the 
presence of a few very high-degree nodes serve as “hubs.” 

I Removing the 3% highest-degree nodes destroys the giant 
component. 

I This could be a good model for a cyberattack. 
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Hindering Diffusion: Endogenous Activity 
In the basic SIR model, people can’t do anything to reduce their 
risk of infection. 

I İ (t) = βS (t) I (t), where β is an exogenous parameter. 

In reality, people can take actions to reduce infection risk, although 
these actions typically involve some costs. 

I Masking, social distancing, etc.. 
I Especially important for very dangerous diseases like Covid-19. 

Paying a cost to reduce your infection risk (“your β”) in period t is 
worth it if I (t) is high enough. 

At the population level, this causes in a reduction in β when I (t) 
is high. 

I Individual behavioral responses endogenously flatten the curve 
to some extent. 
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Hindering Diffusion: Endogenous Activity (cntd.) 

This type of behavioral SIR model fits the data from the 
Covid-19 pandemic better than the standard SIR model. 

I Cases typically rose fast but slower than exponentially, 
reflecting people and governments taking precautions. 

Several variant of behavioral SIR models have been developed 
(especially since Covid). 

We’ll present a simple one that gives the main idea. 
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A Behavioral SIR Model 
Suppose that at each point in time every individual can pay a cost 
c to completely eliminate her risk of getting infected at that time. 

I Let’s call this action “vigilance.” 

Suppose individuals perceive the harm they suffer if they get 
infected as h. 

Since susceptible individuals get sick at rate βI (t) if they are not 
vigilant: 

c1. If I (t) < I ∗ = hβ , no one if vigilant. 

2. If I (t) > I ∗ , everyone is vigilant. 
3. If I (t) = I ∗ , each individual is indifferent between being 
vigilant or not being vigilant, so it may be that some people 
are vigilant while others are not. 

I When we introduce game theory language in the 2nd half of 
the class, we will call such a situation a mixed-strategy 
equilibrium. 
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Behavioral SIR Model (cntd.) 

Under our simplifying assumption that being vigilant completely 
eliminates risk, I (t) can never actually rise above I ∗ . 

I If it did, everyone would be vigilant, so İ (t) would 
immediately fall to −γI (t), and I (t) would drift back down 
to I ∗ . 
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Behavioral SIR Model (cntd.) 
So, the epidemic will proceed in 3 phases: 

1. Rising phase: Initially, I (t) is close to 0, so no one is vigilant 
and I (t) starts rising. In this phase, the epidemic proceeds 
exactly as in the standard SIR model. 

2. Plateau phase: Once I (t) hits I ∗ , enough people start being 
vigilant so that I (t) remains exactly at I ∗ for an extended 
period of time. This is the only possibility because 

I I (t) can’t rise above I ∗ (everyone would start being vigilant) 
I I (t) can’t fall below I ∗ before herd immunity is reached 
(everyone would stop being vigilant, and I (t) would rise again) 

I (Aside: This is an example of a game where the only 
equilibrium involves mixed strategies. This is typical of 
situations where people want to do the opposite of others, like 
a pandemic where I can relax if others are vigilant but I should 
be vigilant if others relax.) 

3. Declining phase: Once herd immunity is reached 
(S (t) = 1/R0 = γ/β), everyone stops being vigilant, and 
I (t) gradually falls to 0 as in the standard SIR model. 
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Behavioral SIR Model: Comments 
This simple model has several features that reflect the Covid-19 
pandemic pretty well. 

1. There is no single huge spike in cases (contrary to SIR-based 
predictions like the Imperial College model). 

2. But the pandemic lasts at a relatively high level for a long 
time, and it takes a long time to reach herd immunity (again 
contrary to SIR-based predictions, which suggested a more 
intense but shorter epidemic). 

3. The long-run share who get sick, R (∞), is slightly lower in 
the behavioral SIR model than the standard SIR model. In 
both models the same herd immunity threshold is ultimately 
reached and there is some overshooting, but there is less 
overshooting in the behavioral SIR model because I (t) is 
lower at the point where herd immunity is reached. 

I Depending on the parameters, this effect can be small, and the 
difference between behavioral SIR and standard SIR can be 
more about spreading infections over time than reducing the 
total number of infections. 
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Helping Diffusion: Optimal Seeding 

We want to stop bad diffusions like epidemics, but we want to help 
spread good diffusions like beneficial new products or technologies. 

The flip-side of optimal removal/vaccination is optimal seeding: 
which nodes should we “seed” to try to maximize the spread of the 
diffusion? 

I “Viral marketers” decide whom to initially inform about their 
products. 

I Development economists decide which villagers to inform 
about a new opportunity or technology. 

I Hackers decide where to insert viral malware. (The diffusion is 
bad for society, but good from the hackers’perspective.) 
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The Diffusion of Microfinance 
An influential paper by economists Banerjee, Chandrasekhar, 
Duflo, and Jackson (2013) takes this perspective to study the 
diffusion of information about the expansion of a microfinance 
program in a group of Indian villages. 

I The microfinance institution entered each village by inviting a 
group of individuals to a meeting, where they were told about 
the expansion. 

I The economists collected survey data about the social 
network in the village and about who ultimately took up the 
microfinance program. 

I They asked how the network position of the “seeds” affected 
ultimate take-up in the village. 

I They show that a measure of the seeds’centrality (similar to 
Katz-Bonacich centrality) is a strong predictor of village 
take-up (much stronger than simpler measures like degree). 

I They conclude that who gets seeded matters for diffusion in 
this context, and that centrality is a key consideration. 
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Just a Few Seeds More? 
A new paper by Akbarpour, Malladi, and Saberi (2021) questions 
the importance of seeding, through an interesting argument: do we 
really need to seed central nodes, given that they’re likely to 
ultimately get infected by others anyway? 

I Suppose an infected node infects a susceptible neighbor with 
independent probability β. 

I Consider the ER network where there is a link from i to j iff i 
will infect j conditional on the event that i becomes infected 
while j is still susceptible. 

I With any small number of initial seeds, the share of the 
population that ultimately gets infected will equal the size of 
the giant component of this network if at least one seed is in 
the giant component, and will equal 0 otherwise. 

I Thus, the advantage of optimal seeding is that we can be sure 
to put at least one seed in the giant component, while with 
random seeding we might miss it. . . 
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Just a Few Seeds More? (cntd.) 

I . . . However, if fraction q of the network is in the giant 
component, the probability of missing the giant component 
with s seeds is only (1 − q)s , which falls exponentially in s. 

I With s random seeds, the expected ultimate reach of the 
diffusion is 1 − (1 − q)s times as large as it is under optimal 
seeding. 

I Hence, random seeding with just a few extra seeds does 
almost as well as optimal seeding. 

I This suggests that optimal seeding may not be a big deal after 
all. 
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Caveats 
It’s interesting that random seeding does well in the standard 
diffusion model where each infected node infects a susceptible 
neighbor with independent probability β. 

However, several caveats are in order before interpreting this as 
saying that optimal seeding doesn’t matter in reality. 

I Seeding does matter if individuals don’t listen to each other 
with the same probabilities. 

I If everyone listens to the village elder and she doesn’t listen to 
anyone, it’s important to seed her. 

I Seeding does matter under complex contagion, where you 
must be infected by several neighbors to become infected 
yourself (i.e., the number of infected neighbors must hit a 
threshold before you become infected). 

I Likely realistic especially in settings here agents are hesitant to 
adopt, like adopting an unproven, high-stakes technology. 
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Complex Contagion in Practice 

Economists Beaman, BenYishay, Magruder, and Mobarak (2021) 
study the diffusion of a novel agricultural technique (“pit 
planting”) among farmers in rural Malawai. 

I They gather social network data and introduce two seeds 
(farmers trained in pit planting) in each village. 

I In some villages, choose the seeds that maximize simple 
contagion (switch to pit planting if ≥ 1 neighbor uses it); in 
others, choose seeds that maximize complex contagion 
(switch iff ≥ 2 neighbors use pit planting). 

I Find that adoption is significantly greater under the latter 
policy. 

I Adoption rates are also closer to those predicted by complex 
contagion (lower than predicted by simple contagion). 

I This suggests that something like complex contagion may be 
going on. It is also further evidence that seeding matters. 
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Diffusion Interventions: Summary 

I Diffusions in societies and networks are often influenced by 
deliberate interventions to hinder or help their spread. 

I Removal of high-degree nodes can greatly limit contagion, 
especially in networks with skewed degree distributions. 

I Endogenous vigilance/social distancing helps explain the path 
of major epidemics like Covid-19. 

I Targeted advertising or seeding is important for spreading 
information about new products or technologies, especially 
under complex contagion. 
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Morris Contagion Model 
Another type of complex contagion is the diffusion of behaviors 
with a “coordination” aspect. 
I E.g. want to use an operating system or social media platform 
that your friends use, want to consume the same products 
your friends consume. 

In such settings, an individual usually wants to change her behavior 
only if suffi ciently many of her neighbors change their behavior. 
I This is sometimes called a threshold model. 
It is a close cousin of complex contagion. 

This was formalized in a uniform-population model (without 
network structure) by sociologist Mark Granovetter in 1978. 
I Similar ideas were introduced earlier by economist Thomas 
Schelling, whom we’ll meet again later in the course. 

The spread of such coordination behaviors on networks was 
introduced in an elegant model by Stephen Morris in 2000. 
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Contagion Model 

Society represented by an undirected graph G = (N, E ) . 

I Each agent (node) i ∈ N chooses an action a ∈ {0, 1}. 
I Agent i wants to take action 0 iff less than fraction q ∈ (0, 1) 
of her neighbors take action 1. 

I She wants to take action 1 iff more than fraction q of 
neighbors take action 1. 

I If exactly fraction q of neighbors take action 1, willing to take 
either action. 

Note: in this model, q is a measure of the “inherent quality” of 
action 0, relative to action 1. 

I q < 1 means action 1 is “superior,” in that it’s optimal if 2 
one’s neighbors are evenly divided; 

1q > 2 means action 0 is superior. 21



Contagion Model (cntd.) 

What are the steady states (or equilibria) of this model? 

I Clearly, everyone choosing 0 and everyone choosing 1 are both 
equilibria. 

I Are there other equilibria, where some “groups” choose 0 and 
others choose 1? 

I If we start at the 0 equilibrium (say) and some small group 
starts playing 1, do others switch? 
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Equilibria 
I Recall that Ni is the set of i’s neighbors. 
I Say a set S ⊆ N is r-cohesive if, for every i ∈ S , at least 
fraction r of i’s neighbors are also in S : formally, 

|Ni (G ) ∩ S |
min ≥ r . 
i ∈S |Ni (G )| 

Theorem 
For any set S 6= ∅, it is an equilibrium for everyone in S to play 1 
and everyone else to play 0 if and only if S is q-cohesive and N\S 
is (1 − q)-cohesive. 

I Two requirements for equilibrium: no one in S wants to 
switch to a = 0, and no one in N\S wants to switch to a = 1. 

I The first requirement is precisely that S is q-cohesive. 
I The second requirement is precisely that N\S is 
(1 − q)-cohesive. 
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Equilibria (cntd.) 

Theorem 
For any set S 6= ∅, it is an equilibrium for everyone in S to play 1 
and everyone else to play 0 if and only if S is q-cohesive and N\S 
is (1 − q)-cohesive. 

Interpretation: The more highly cohesive sets there are in the 
network, the more scope there is for diverse patterns of behaviors. 

I A network with many tight-knit communities can exhibit 
diverse behaviors, where some pockets use one 
technology/consume one type of product, and other pockets 
use different technologies/products. 

I Networks with more uniform interaction structures tend to 
exhibit more homogeneous behaviors. 
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Contagion 
Consider a variant where we start from the equilibrium where 
everyone plays a = 0 and we seed some set S with a = 1. 
I Then, each individual with a = 0 switches to a = 1 iff more 
than fraction of q of its neighbors are playing a = 1. 

I Repeat this process until no one wants to switch to a = 1. 
I Note: we don’t allow switching back from a = 1 to a = 0. 
This is sometimes called progressive diffusion. 
(To ponder: what changes in the alternative, non-progressive 
case?) 

I We say there is contagion from S if this process results in 
a = 1 taking over the network. 

Theorem 
There is contagion from S iff, for any S 0 ⊇ S, the set N\S 0 is not 
(1 − q)-cohesive. 

I Necessity is obvious: if for some S 0 ⊇ S , the set N\S 0 is 
(1 − q)-cohesive, contagion can never enter the set N\S 0 . 
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Contagion (cntd.) 

Theorem 
There is contagion from S if and only if, for any S 0 ⊇ S, the set 
N\S 0 is not (1 − q)-cohesive. 

Proof of suffi ciency: 

I In every period, set of players taking a = 1 is some S 0 ⊇ S . 
I If the set N\S 0 is not (1 − q)-cohesive, some player will 
switch to a = 1. 

I Since the network is finite, eventually everyone will have 
switched to a = 1. 

This is a powerful theorem. However, in practice it can be diffi cult 
to check whether all subsets of N are q- or (1 − q)-cohesive. 26



Remark 

Recall that low q means action 1 is “superior.” 

I Theorem says that even superior innovations may not spread. 
I However, the better the innovation (the lower is q), the more 
cohesive the network must be to stop it from spreading. 

I E.g. in the complete network with n nodes, if infect m initial 
n−m−1nodes, the complementary set of n − m agents is n−1 mcohesive. So the innovation spreads iff q < n−1 . 

I Conversely, inferior innovations can spread. 
I However, we will see a limit to this result on the next slide. 
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Theorem
For any infinite graph where each node has finite degree, if q > 1

2
then, for any finite initially infected set S, contagion does not
spread (infinitely far) from S.

Infinite Graphs 

We can apply the same contagion process to an infinite graph 
(perhaps a better model for contagion in a large society than a 
finite graph). 

I In this case, by contagion from S we mean that given the 
(finite) initially infected set S , the infection grows without 
bound. 

1I E.g. if the graph is an infinite line and q = 2 − ε, contagion 
spreads from a single initially infected node. 

However, we can obtain the striking result that an inferior 
1innovation (that is, one with q > 2 ) can never spread. 
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Infinite Graphs 

We can apply the same contagion process to an infinite graph 
(perhaps a better model for contagion in a large society than a 
finite graph). 

I In this case, by contagion from S we mean that given the 
(finite) initially infected set S , the infection grows without 
bound. 

1I E.g. if the graph is an infinite line and q = 2 − ε, contagion 
spreads from a single initially infected node. 

However, we can obtain the striking result that an inferior 
innovation (that is, one with q > 1 ) can never spread. 2 

Theorem 
1For any infinite graph where each node has finite degree, if q > 2 

then, for any finite initially infected set S, contagion does not 
spread (infinitely far) from S. 
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Infinite Graphs (cntd.) 
Proof. 
At any period, define the interface between the infected and 
non-infected region to be the set of all links between an infected 
node and a non-infected node. 

Claim: in each period, either no new nodes become infected or the 
number of links in the interface strictly decreases. 

1I Since q > 2 , if any new node becomes infected in period 
t + 1, it must have strictly more links to the period-t infected 
set than to the period-t non-infected set. 

I The former links were in the period t interface but not the 
period t + 1 interface. The latter links were not in the period 
t interface and may or may not join the interface in period 
t + 1. No other links join the interface. 

Since the number of links in the period 0 interface is finite, there 
can only be finitely many periods at which new nodes become 
infected. 
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Morris Contagion Model: Summary 

I The Morris contagion model is a model of the network 
diffusion of behaviors with a coordination aspect. 

I The more cohesive is the network, the more likely there are to 
be multiple equilibria with different patterns of behavior. 

I The more cohesive is the network, the harder it is for a new 
innovation to spread, even if it is superior to the status quo. 

I For some networks, an inferior innovation can spread if the set 
of initial adopters is large enough. 

I However, an inferior innovation can never spread infinitely far. 

31



 
 

 

            

 
MIT OpenCourseWare 
https://ocw.mit.edu 

14.15 / 6.207 Networks 
Spring 2022 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

32

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover-slides.pdf
	cover_h.pdf
	Blank Page





