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Plan for Recitation 

1. Review Chetty et al. (2009) derivation from lecture 

2. Bayesian Learning 

3. Deviations from Bayesian Learning 
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Inattention to taxes: Chetty et al. (2009) 

Taxes not featured in price are likely to be ignored 
Sales tax only added at the register 

Demand D( V ̂) is a function of perceived value V ̂
Visible part of the value v = x − p, where x reflects how much you like the good and p is its price 
Less visible (opaque) part o = −tp, where t is the tax rate 
V̂ = v + (1 − θ)o = x − p − (1 − θ) tp 

dD dD Note that > 0 (and therefore < 0) 
dV ̂ dp 

ˆ ˆBelow focus on opaque part of V so write V = v − (1 − θ) tp 
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Effect of making the tax fully salient 

Would like to compute the change in log demand when θ falls to 0 

Δ log D( V ̂) = log D [v − tp] − log D [v − (1 − θ) tp] 

Note that for any f (x), f (x + α) ≈ f (x) + αf 0(x) 
Equivalently, f (x + α) − f (x) ≈ αf 0(x) 
Let f (.) = log D(.), x = v − (1 − θ) tp, and α = −θtp 
Then right-hand side above is f (x + α) − f (x), which is ≈ αf 0(x) 

This gives: 

Δ log D( V ̂) = log D [v − tp] − log D [v − (1 − θ) tp] 

d log D[v − (1 − θ)tp] ≈ −θtp · 
dθ 
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Effect of making the tax fully salient 

Next, note that: 

This means: 

d log Y (t) dY (t) = dt Y (t) 

Δ log D( V̂ ) = 

≈ 

= 

log D [v − tp] − log D [v − (1 − θ) tp] 

d log D[v − (1 − θ)tp] −θtp · 
dθ 

D 0 [v − (1 − θ) tp] −θtp ∗ 
D [v − (1 − θ) tp] 
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Effect of making the tax fully salient 

dD Finally, define the price elasticity of demand ηD,p as − D
p · dp 

t∗ηD,p 

This gives: 

Δ log D( V ̂) = log D [v − tp] − log D [v − (1 − θ) tp] 

≈ −θtp · d log D[v − (1 − θ)tp] 
dθ 

= −θtp ∗ D
0 [v − (1 − θ) tp] 

D [v − (1 − θ) tp] 
= −θt ∗ ηD,p 

This implies θ = −Δ log D( V ̂) 

Chetty et al. (2009) try to measure this 
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Bayesian Learning: Overview 

Almost all economic decisions are undertaken with some degree of uncertainty 

Individuals must make decisions based on perceived likelihoods of outcomes 

How do individuals form beliefs about statistical likelihoods? 
Bayesian learning: the “statistically correct” way to form beliefs 
In reality, we see systematic deviations from Bayesian learning 

Base rate neglect 
Gamblers’ fallacy 
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Bayesian Learning: Overview 

Set-up: 
1. Individual has a prior belief of the likelihood that something is true 
2. Individual observes a signal in the world that is indicative of whether it’s true 
3. Individual combines her prior and signal to form a posterior belief of the likelihood that it’s true 

How should (in a statistical sense) the individual combine her prior and signal to form a posterior? 
Use Bayes’ Rule! 
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Bayes’ Rule 

Notation 

Individual has some hypothesis, h 

Her prior belief is that h is true with probability P(h) 

She observes signal, D, that provides information about the likelihood that h is true 

She forms a posterior belief about the probability h is true given D: P(h|D) 

How does she form P(h|D)? 
Bayes’ Rule: P(h|D) = P(D|h)·P(h) P(D) 

Where does Bayes’ Rule come from? 
We know P(h|D) = P(h∩D) , which implies P(h ∩ D) = P(h|D) · P(D) 

P(D) 

Similarly, P(D|h) = P(h∩D) , implying P(h ∩ D) = P(D|h) · P(h) 
P(h) 

Equating the two expressions for P(h ∩ D) gives P(h|D) · P(D) = P(D|h) · P(h) or P(h|D) = P(D|h)·P(h) 
P(D) 
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Bayes’ Rule Example 

Suppose there are two urns: (a) one with an equal number of black and white balls, and (b) one with 
75% black balls and 25% white balls. We pick one urn at random and draw a ball at random. The ball 
drawn in black. What is the probability that we were drawing from urn (a)? 

Should it be greater than, equal to, or less than 0.5? 

Notation 

h = ball is from urn (a) 

D = black ball drawn 

We would like P(h|D) = P(D|h)·P(h) P(D) 
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Bayes’ Rule Example 

We would like P(h|D) = P(D|h)·P(h) P(D) 

P(h) = the probability the ball comes from urn (a) before we observe the ball’s color (the prior 
probability) 

What value does P(h) take? 0.5 

P(D|h) = the probability a black ball is drawn if drawing from urn (a) 
What value does P(D|h) take? 0.5 

P(D) = the probability a black ball is drawn 
Law of total probability = the probability of an outcome occuring is equal to the sum of probabilities of 
every distinct way it can occur 
P(D) = P(D ∩ h) + P(D ∩ h0) = P(D|h)P(h) + P(D|h0)P(h0) = (0.50)(0.50) + (0.75)(0.50) 

P(D|h)·P(h) (0.5)(0.5) Combining: P(h|D) = = = 0.4 P(D) (0.50)(0.50)+(0.75)(0.50) 
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Base-Rate Neglect 

A common behavioral deviation from Bayesian learning 

One in a hundred people have HIV, and we have a test for HIV that is 99% accurate. If a person 
tested positive, what’s the probability that she has HIV? 

Most people answer 99% 
Bayes’ Rule provides a different answer 
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Bayes’ Rule 

Notation: P=HIV-positive; N=HIV-negative; p=tested positive 

We would like to know P(P|p) = P(p|P)P(P) P(p) 

P(p|P)P(P) = (0.99)(0.01) 
P(p) = P(p ∩ P) + P(p ∩ N) = P(p|P)P(P) + P(p|N)P(N) = (0.99)(0.01) + (0.01)(0.99) 

(0.99)(0.01) This implies: P(P|p) = = 0.5 = 06 .99 (0.99)(0.01)+(0.01)(0.99) 
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Base Rate Neglect 

Base Rate Neglect: when given base rate information (i.e. information pertaining to everyone) and 
specific information (i.e. information pertaining to a particular individual), people focus on the latter 
and ignore the former 

In the HIV example, people see positive test results (specific information) and forget to account for 
the fact that HIV is unlikely in the first place (base rate information) 

Implies a deviation from Bayes’ Rule 
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The Gambler’s Fallacy 

Another common behavioral deviation from Bayesian learning 

You toss a coin 20 times. The first 19 times are tails. What’s the probability that the final toss is 
also tails? 

Some people might say the probability is very low, reasoning that you’ve just seen a lot of tails so it 
would be very unlikely to see another 
Bayes’ Rule gives probability of 

2
1 
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Bayes’ Rule 

Notation: T = the final toss is tails, T19 = the first 19 tosses were tails 

Bayes’ Rule gives P(T |T19) = P(T19|T )P(T ) 
P(T19) 

Start with P(T19), the probability the first 19 draws are tails 
What value does P(T19) take? 1 

219 

P(T19|T ): the probability that the first 19 draws are tails given the last one is tails 
Tricky: the last draw being tails tells us nothing about the likelihood that the first 19 were tails 

1 The outcomes are independent so P(T19|T ) = P(T19) = 
219 

P(T ): probability that the last toss is tails prior to observing the first 19 tosses 
What value does P(T ) take? 0.5 

1 The ’s cancel and we are left with P(T |T19) = P(T ) = 0.5 219 

Intuitively: the signal contains no information so we should stick with our prior 

We didn’t have to use Bayes’ rule to get this (though going through it is good practice!): could 
instead have noted that independence means P(T |T19) = P(T ) = 0.5 
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The Gambler’s Fallacy 

The Gambler’s Fallacy: the belief that an event occuring frequently in the past means it’s less likely 
to occur in the future when in fact the occurrences of the event in the past and in the future are 
independent 

In the coin toss example, many people don’t internalize the independence between the last coin toss 
and the first 19; after they see 19 tails, they think it’s very unlikely the 20th would also be tails 

Chen, Moskowitz, & Shue (2016): evidence of the Gambler’s Fallacy in high-stakes, real-world 
decisions 

Study decisions of asylum judges, loan officers, and baseball umpires 
Find negative autocorrelation (what does this mean?) of decisions that is unrelated to case quality 
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