

Road Map

1. Folk Theorem

2. Applications (Problems)

Folk Theorem

Definition: $v = (v_1, v_2, ..., v_n)$ is feasible iff v is a convex combination of pure-strategy payoff-vectors:

 $v = p_1 u(a^1) + p_2 u(a^2) + \dots + p_n u(a^m),$

where $p_1 + p_2 + ... + p_m = 1$, and $u(a^i)$ is the payoff vector at strategy profile a^i of the stage game.

Theorem: Let $x = (x_1, x_2, ..., x_n)$ be *s* feasible payoff vector, and $e = (e_1, e_2, ..., e_n)$ be a payoff vector at some equilibrium of the stage game such that $x_i > e_i$ for each *i*. Then, there exist $\underline{\delta} < 1$ and a strategy profile *s* such that *s* yields *x* as the expected average-payoff vector and is a SPE whenever $\delta > \underline{\delta}$.

Range of δ for SPE

- Alice Hires and Bob and Colin both Work until any of the workers Shirk; Alice Hires and Bob and Colin both Shirk thereafter.
- Alice Always Hires. Both workers Work at t = 0. At any t > 0, each worker Works if the previous play is (Hire, Work, Work) or (Hire, Shirk, Shirk); each worker Shirks otherwise.

2007 Midterm 2, P3

- Stage Game: Linear Bertrand Duopoly (c=0; Q=1-p)
- s*: They both charge 1/2 until somebody deviates; they both charge 0 thereafter.
- s**: n + 1 modes: Collusion, W1, W2, ..., Wn. Game starts at Collusion. Both charge 1/2 in the Collusion mode and p*<1/2 in W1,..., Wn. Without deviation, Collusion leads to Collusion, W1 leads to W2,..., Wn-1 leads to Wn, and Wn leads to Collusion. Any deviation leads to W1.

14.12 Economic Applications of Game Theory Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.