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Road Map

1. Cournot (quantity) competition
1. Rationalizability
2. Nash Equilibrium
2. Bertrand (price) competition
1. Nash Equilibrium
2. Rationalizability with discrete prices
3. Search Costs




Cournot Oligopoly

« N=1{1,2,...,n} firms;
» Simultaneously, each firm i + P

produces q; units of a good at
marginal cost c, 1

+ and sells the good at price
P = max{0,1-Q}
where Q = q,+...1q,,.

* Game = (S,,....,S; T},...,7,)
where S, = [0,0),

(s +5n) = Gil1-(q1 . +qp)-c] if gy .. Hqn < 1,
-q;c otherwise.




Cournot Duopoly -- profit

(1-q;-¢)/2 1-q-c




C-D — best responses
qu(qj) :max{(l“qj"c)/zao}; . q,

* Nash Equilibrium g*: -
q;* = (1-q,*-¢)/2;
q,* = (1-q,*-¢)/2;
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Rationalizability in Cournot Duopoly
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Rationalizability in Cournot duopoly

* If i knows that g; < q, then q; > (1-c-q)/2.

» If i knows that g;> q, then g; < (1-c-q)/2.

* We know that q;> q°= 0.

» Then, g; < q' = (1-¢c-q°)/2 = (1-¢)/2 for each i;

« Then, q; > q*> = (1-c-q")/2 = (1-¢c)(1-1/2)/2 for each i;

» Then, q" < q, £ q""! or q""! < q, < q" where
q = (1-c-q")/2 = (1-c)(1-1/2+1/4-.. . +(-1/2)")/2.
* Asn—ow, q" — (1-¢)/3.




Rationalizability in Cournot oligopoly

n=3 is not very helpful!!!
Everybody is rational

=>q; < (1-0)/2;

Everybody is rational and knows 2

==>q, =20

Everybody is rational and knows 4

=>q; < (1-¢)/2;

Everybody is rational and knows 6

=>q,; 20
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Cournot Oligopoly --Equilibrium
* g>1-cis strictly dominated, so q < 1-c.
T(qy5---,q,) = Qi[1-(q; F...+q,)-¢] for each 1.

* FOC: o7(g00,)|  _Olg1-gi==g,—0)]
oq, i oq, i
=(l-¢; —-—¢q,-¢)—gq; =0.
. ThatiS, zqr+q;+”.+q::1_c

g+ 2 -+ g, =1

g+, ++2q, =1-¢

* Therefore, q,*=...=q,*=(1-c)/(n+1).




Bertrand (price) competition

N = {1,2} firms.
Simultaneously, each firm 1 sets a price p;;

[fp;<p;, firmisells Q= max{l —p,,0}
unit at price p;; the other firm gets 0.

If p, = p,, each firm sells Q/2 units at price
p;, where Q = max{l —p,,0}.
The marginal cost is 0.
p(-p) if p, < p,
7 (P py)=p(1=p)/2 if p = p,
0 otherwise.
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Bertrand duopoly -- Equilibrium

Theorem: The only Nash equilibrium in the
“Bertrand game™ 1s p* = (0,0).

Proof:

1. p*=(0,0) is an equilibrium.

2. Ifp=(p.,p,) 1s an equilibrium, then p = p*.

1. If p=(p,.p,) 1s an equilibrium, then p, = p,.
* p>p=0=>p’=¢ p>p>0=p’=p,

2. If p, = p, in equilibrium, then p = p*.
* PiEpU=p i Ep e

11



Bertrand competition with discrete
prices -- Rationalizability

Allowable prices P = {0.01,0.02,0.03,...}

Round 1: Any p, > 0.5 is eliminated

— p; 1s strictly dominated by o; with ¢,(.5)=1-¢,
c,(.01)=¢ for small .

Round m:
— P={0.01,0.02,...,p™} available prices at round m

— If p>.01, it is strictly dominated by &; with c;(p™-

.01)=1-¢, 6,(.01)= ¢ for small «.
Rationalizable strategies: {0.01}
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Bertrand Competition with costly search

« N={FL,F2,B}; F1,F2
are firms; B is buyer

* B needs | unit of good,
worth 6;

*  Firms sell the good;
Marginal cost = 0.

»  Possible prices P =
{3,5}.

*  Buyer can check the

prices with a small cost
c>0.

Game:

L.

2.

Each firm i chooses price
Pi>

B decides whether to
check the prices;

. (Given) If he checks the

prices, and p,#p,, he buys
the cheaper one;
otherwise, he buys from
any of the firm with
probability 2.
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Bertrand Competition with costly

search
2 F2 .
Fl High Low Fl High Low
High High
Low Low
Check Don’t Check
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Mixed-strategy equilibrium

Symmetric equilibrium: Each firm charges
“High” with probability q;

Buyer Checks with probability r.

U(check;q) =91 + (1-g")3 ¢ =3-2¢2—c;
U(Don’t;q) = ql +(1-q)3 =3 -2q;
Indifference: 2q(1-q) =c; i.e.,

U(high;q,r) = (1-r(1-q))5/2;

U(low;q,r) = qr3 + (1-qr)3/2

Indifference: r=2/(5-2q).
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