
Chapter 10 

Application: Negotiation 

Negotiation is an essential aspect of social and economic interaction. The states negoti-

ate their borders with their neighbors; the legislators negotiate the laws that they make; 

defendants negotiate a settlement with the prosecutors or the plaintiffs in the courts; 

workers negotiate their salaries with their employers; the families negotiate their spend-

ing and maintenance of the household with each other, and even some students try to 

negotiate their grades with their professor. Despite its central importance, negotiations 

were presumed to be outside of the purview of economic analysis until the emergence of 

game theory. Today there are many game theoretical models of bargaining. These notes 

apply backward induction to three important bargaining games. The first one considers 

congressional bargaining. It abstracts away from the back-room deals that lead to the 

proposed bills and focus on the way legislators vote between various alternatives. The 

second model considers pretrial negotiation in law. The third one is a general model of 

bargaining that can be applied to many different settings in economics. 

10.1	 Congressional Bargaining–Voting with a Bi-

nary Agenda 

In the US Congress, when a new bill introduced, there are often other alternative pro-

posals, such as amendments, amendments to amendments, substitute bills, amendments 

to substitute bills, etc. There are rules of the Congress that determine the order in which 

these proposals, or "alternatives", are voted against each other, eventually leading to a 
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Figure 10.1: A binary agenda 

final bill. In the final vote, the final bill, which  may  not  be  the  original one, passes,  or  

fails, in which case the status quo prevails. For example, if there is a bill, an amend-

ment, and the status quo, first they vote between the bill and the amendment, then they 

vote between the winner of the previous vote and the status quo. These rules and the 

available proposals lead to a "binary" agenda; it is binary because in any session two 

alternatives are voted against each other. 

Let {1     2+ 1} be the set of players and {0     } be the set of alternatives. 
Each player has a strict preference ordering for the set of alternatives. There is a fixed 

binary agenda, and assume that all of these are commonly known. 

To  solve this game,  we  start  from  a last vote (a  vote after  which  there  is  no  further  

voting). We assume that each player votes according to his preference. The alternative 

that gets  + 1  or more votes wins. We then truncate the game by replacing the vote 

with the winning alternative. We proceed in this way until there is only one alternative. 

For example, consider three players, namely 1, 2, and  3, and three alternatives, 

namely 0, 1, and  2. The agenda is as in Figure 10.1. According to the agenda, 

0 and 1 are voted against each other first; the winner is voted against 2 next. If 

the winner defeats 2 as well, then it is implemented; otherwise 2 (the winner of the 

second vote) is voted against the loser of the first vote and the winner of this vote is 

implemented. 
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The preference ordering of the three players is as follows: 

1 2 3 

0 2 1 

1 0 2 

2 1 0 

where the higher-ranked alternatives are placed in the higher rows. 

Consider the branch on the left first. In the last vote, which is between 1 and 2, 

every player vote his better alternative according to the table. Players 1 and 3 vote for 

1, and  Player  2  votes  for  2. In  this  vote  1 beats 2. Now consider the preceding 

vote, between 0 and 2. Now, everyone knows that if 2 wins, in the next round 1 will 

be implemented. Hence, a vote for 2 is simply a vote for 1. Hence, in the backward 

induction, the final vote is replaced with its winner, namely 1. Those  who  prefer  0 

to 1, who  are  players  1  and  2,  vote  for  0, and the other player, who prefers 1 to 0, 

votes for 2. In this vote, 0 wins. 

Now consider the right branch. In the last round, between 0 and 2, Player  1  votes  

for 0, and  2 and  3  vote for  2, resulting in the winning of 2. Hence, in the backward 

induction, the last round is replaced by 2. In the previous vote between 1 and 2, 

if 1 wins it is implemented, and if 2 wins it will be implemented (after defeating 0, 

which will happen). Then, each player votes according to his true preference: players 1 

and 3 for 1, and  Player  2  for  2. Alternative  1 wins. Therefore, on the right branch, 

1 wins. 

Finally, at the very first vote, between 0 and 1, the players know that the winning 

alternative will be implemented in the future. Hence, everybody votes according to his 

original preferences and 0 wins. 

An interesting phenomenon is called a killer amendment or a poison pill. Suppose  

that we have a bill 1 that is preferred by a majority of the legislators to the status 

quo, 0. If the bill is voted against the status quo, it will pass. A poison pill or a killer 

amendment is an amendment 2 that is worse than the status quo, 0, according  to  a  

majority. Recall that the amendment 2 is first voted against the bill 1 and the winner 

is finally voted against the status quo 0. If the amendment passes, then it will fail in 

the last round, and the status quo will be kept. Hence the term killer amendment. 

Note that according to backward induction, a killer amendment is defeated in the 
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first round (assuming that a majority prefers 1 to 0). This is because if 2 defeats 1, 

in the next round 0 will be implemented. Hence, in the first round a vote for 2 is a 

vote for the status quo, 0. Then, the players who prefer the status quo, 0, to the bill 

will vote for the amendment, 2, and the players who prefer the bill, 1, to the status 

quo will vote for the bill. Since the latter group is a majority, 1 defeats the amendment 

in the first round. 

But poison pills and killer amendments are frequently introduced and sometimes they 

defeat the original bill (and eventually are defeated by the status quo). A famous exam-

ple to this is DePew amendment to the "17th amendment to the constitution" in 1912. 

Here, the 17th amendment, 1, requires the senators to be elected by the statewide 

popular vote. This bill was supported by the (Southern) Democrats and half of the 

Republicans, making up the two thirds of the congress. The DePew amendment, 2, 

required that these elections be monitored by the federal government. Each Republican 

slightly prefers 2 to 1, so the proponent Republicans’ ordering is 2 Â 1 Â 0 and 

the opposing Republicans’ ordering is 0 Â 2 Â 1, where  0 is the status quo. But 

the federal oversight of the state elections is unacceptable to the southern Democrats 

for obvious reasons: 1 Â 0 Â 2. Notice that "opposing Republicans" and Democrats, 

which is about the two thirds of the legislators, prefer the status quo to the DePew 

amendment. Hence, the DePew amendment is a killer amendment. According to our 

analysis it should be defeated in the first round, and the original bill, the 17th amend-

ment, should eventually pass. But this did not happen. The DePew amendment killed 

the bill. 

Why does this happen? It would be too naive to think that a legislator is so myopic 

that he cannot see one step ahead and fails to recognize a killer amendment. Sometimes, 

legislators might not know the preferences of the other legislators. After all, these 

preferences are elicited in these elections. In that case, the backward induction analysis 

above is not  valid  and  needs to be modified. Of course, in that case, an amendment may 

defeat the bill (because of the proponents who think that it has enough support for an 

eventual passage) but later be defeated in the final vote because of the lack of sufficient 

support (which was not known in the first vote). But mostly, the killer amendments 

are introduced intentionally, and the legislators have a clear idea about the preferences. 

Even in that case, a killer amendment can pass, not because of the stupidity of the 
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proponents of the original bill, but because their votes against the amendment can be 

exploited by their opponents in the upcoming elections when the voters are not informed 

about the details of these bills. 

The moral of the story is that it is not enough that your analysis is correct. You 

must also be analyzing the correct game. You will learn the first task in the Game 

Theory class; for the second, and more important, task of considering the correct game, 

you need to look at the underlying facts of the situation. 

10.2 Pre-trial Negotiations 

Consider two players: a Plaintiff and a Defendant. The Plaintiff suffers a loss due to 

the negligence of the Defendant, and he is suing her now. The court date is set at date 

2+ 1. It is known that if they go to court, the Judge will order the Defendant to pay 

   0 to the Plaintiff. But the litigation is very costly. For example, in the US, 95% of 

cases are settled without going to court. In order to avoid the legal costs, the Plaintiff 

and the Defendant are also negotiating an out of court settlement. The negotiation 

follows the following protocol. 

•	 At each date  ∈ {1 3     2− 1},  if they have not  yet settled,  the  Plaintiff offers 

a settlement , 

•	 and the Defendant decides whether to accept or reject it. If she accepts, the game 

ends with the Defendant paying  to the Plaintiff; the game continues otherwise. 

•	 At dates  ∈ {2 4     2}, the Defendant offers a settlement , 

•	 and the Plaintiff decides whether to accept the offer, ending the game with the 

Defendant paying  to the Plaintiff, or to reject it and continue. 

•	 If they do not reach an agreement at the end of period  = 2,  they go to court,  

and the Judge orders the Defendant to pay   0 to the Plaintiff. 

The Plaintiff pays his lawyer  for each day they negotiate and an extra  if they 

go to court. Similarly, the Defendant pays her lawyer  for each day they negotiate 

and an extra   if they go to court. Each party tries to maximize the expected amount 

of money he or she has at the end of the game. 
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The backward induction analysis of the game as follows. The payoff from going to 

court for the Plaintiff is 

 −  − 2  

If he accepts the settlement offer 2 of the Defendant at date 2, his  payoff will be 

2 − 2  

Hence, if 2    −  ,  he must accept the  offer, and if 2    −  ,  he must reject  

the offer. If 2 =  −  , he  is  indifferent between accepting and rejecting the offer. 

Assume that he accepts that offer, too.1 To sum up, he accepts an offer 2 if and only 

if 2 ≥  −  . 

What should the Defendant offer at date 2? Given the behavior of Plaintiff, her  

payoff from 2 is 

−2 − 2 if 2 ≥  −  

− −  − 2 if 2    −   

This is because, if the offer is rejected, they will go to court. Notice that when 2 = 

 −  , her  payoff is − +  − 2, and  offering anything less would cause her to 

lose  +  . Her  payoff is plotted in Figure 10.2. Therefore, the Defendant offers 

2 =  −  

at date 2. 

Now at date 2 − 1, the  Plaintiff offers a settlement 2−1 and the Defendant accepts 

or rejects the offer. If she rejects the offer, she will get the payoff from settling for 

2 =  −  at date 2, which  is  

− +  − 2 

If she accepts the offer, she will get 

−2−1 − (2 − 1)  

1In fact, he must accept 2 =  −  in equilibrium. For, if he doesn’t accept it, the best response 

of the Defendant will be empty, inconsistent with an equilibrium. (Any offer 2 =  −  +  with 

   0 will be accepted. But for any offer 2 =  −  + , there is a better offer 2 =  −  + 2, 

which will also be accepted.) 
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Figure 10.2: Payoff of Defendant from her offer at the last period 

Hence, she will accept the offer if and only if the last expression is greater than or equal 

to the previous one, i.e., 

2−1 ≤  −  +  

Then, the Plaintiff will offer the highest acceptable settlement (to the Defendant): 

2−1 =  −  +  

In summary, since the Plaintiff is making an offer, he offers the settlement amount of 

next date plus the cost of negotiating one more day for the Defendant. 

Let us apply the backward induction one more step. At date 2 − 2, the Defendant 

offers a settlement 2−2 and the Plaintiff accepts or rejects the offer. If he rejects the 

offer, he  will get  the  payoff from settling for 2−1 =  −  +  at date 2 − 1, which  

is 

2−1 − (2 − 1)  =  −  +  − (2 − 1)   

If he accepts the offer, he will get 

2−2 − (2 − 2)   

Hence, he will accept the offer if and only if the last expression is greater than or equal 

to the previous one, i.e., 

2−2 ≥ 2−1 −  =  −  +  −   
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Then, the Defendant offers the highest acceptable settlement (to the Plaintiff): 

2−1 = 2−1 −  =  −  +  −   

In summary, since the Defendant is making an offer, she offers the settlement amount 

of next date minus the cost of negotiating one more day for the Plaintiff. 

Now the pattern is clear. At any odd date , the Defendant accepts an offer  if and 

only if  ≤ +1 + , and the Plaintiff offers 

 = +1 +  ( is odd) 

At any even date , the  Plaintiff accepts an offer  if and only if  ≥ +1 −  , and  the  

Defendant offers 

 = +1 −  ( is even) 

The solution  to  the  above difference equation is ( 
 −  + ( − 2) ( −  ) if  is even 

 = 
 −  + ( − ( + 1)  2) ( −  ) +   if  is odd. 

Recall from the lecture that the solution is substantially different if the order of the 

proposers is changed (see the slides). This is because at the last day, the cost of delaying 

the agreement is quite high (the cost of going to court), and the party who accepts or 

rejects the offer is willing to accepts a wide range of offers. Hence, the last proposer has 

a great advantage. 

10.3 Sequential Bargaining 

Imagine that two players own a dollar, which they can use only after they decide how 

to divide it. Each player is risk-neutral and discounts the future exponentially. That 

is, if a player gets  dollar at day , his  payoff is  for some  ∈ (0 1). The set of all © ª 
feasible divisions is  = ( ) ∈ [0 1]2 | +  ≤ 1 . The players are bargaining over the 

division of the dollar by making offers and counteroffers, as it will be clear momentarily. 

We want to apply backward induction to this game in order to understand when the 

parties will reach an agreement and what the terms of the agreement will be. 

First consider the following simplified model with only two rounds of negotiations. In 

the first day, Player 1 makes an offer (1 1) ∈ . Then, knowing what has been offered, 



161 10.3. SEQUENTIAL BARGAINING 

Player 2 accepts or rejects the offer. If he accepts the offer, the offer is implemented, 

yielding payoffs (1 1). If he rejects the offer,  then  they wait until  the next day,  when  

Player 2 makes an offer (2 2) ∈ . Now, knowing what Player 2 has offered, Player 

1 accepts or rejects the offer. If Player 1 accepts the offer, the offer is implemented, 

yielding payoffs (2 2). If  Player  2  rejects  the  offer, then the game ends, when they 

lose the dollar and get payoffs (0,0). 

The backward induction analysis of this simplified model is as follows. On the second 

day, if Player 1 rejects the offer, he gets 0. Hence, he accepts any offer that gives him 

more than 0, and he is indifferent between accepting and rejecting any offer that gives 

him 0. As we have seen in the previous section, he accepts the offer (0,1) in equilibrium. 

Then,  on the  second day,  Player 2 would offer (0,1), which is the best Player 2 can get. 

Therefore, if they do not agree on the first day, then Player 2 takes the entire dollar on 

the second day, leaving Player 1 nothing. The value of taking the dollar on the next 

day for Player 2 is . Hence, on the first day, Player 2 accepts any offer that gives him 

more than , rejects  any  offer that gives him less than , and he is indifferent between 

accepting and rejecting any offer that gives him . As above, assume that Player 2 

accepts the offer (1 −  ). In  that  case,  Player  1  offers (1 −  ), which is accepted. 

Could Player 1 receive more than 1 − ? If he offered anything that is better than 1 −  

for himself, his offer would necessarily give less than  to Player 2, and Player 2 would 

reject the offer. In that case, the negotiations would continue to the next day and he 

would receive 0, which is clearly worse than 1 − . 

Now, consider the game in which the game above is repeated  times. That is, if 

they have not yet reached an agreement by the end of the second day, on the third day, 

Player 1 makes an offer (3 3) ∈ . Then, knowing what has been offered, Player 2 

accepts or rejects the offer. If he accepts the offer, the offer is implemented, yielding ¡ ¢ 
payoffs 23 

23 . If he rejects the offer, then they wait until the next day, when 

Player 2 makes an offer (4 4) ∈ . Now, knowing what Player 2 has offered, Player 

1 accepts or rejects the offer. If Player 1 accepts the offer, the offer is implemented, ¡ ¢ 
yielding payoffs 34 

34 . If  Player  1  rejects  the  offer, then they go to the 5th day... 

And this goes on like this until the end of day 2. If they have not yet agreed at the 

end of that day, the game ends, they lose the dollar and get payoffs (0,0).  

Application of backward induction to this game results in the following strategy 

http:��2���2).If
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profile. At any day  = 2 − 2 ( is a non-negative integer), Player 1 accepts any offer 

( ) with ¡ ¢ 
 1− 2

 ≥ 
1 +  

and rejects any offer ( ) with ¡ ¢ 
 1− 2

   
1 +  

Player 2 offers Ã ¡ ¢ ¡ ¢! Ã ¡ ¢ ! 
 1− 2  1− 2  1− 2 1 + 2+1 

( ) =   1− ≡   
1 +  1 +  1 +  1 +  

And at any day  − 1 = 2 − 2 − 1, Player 2  accepts an  offer ( ) iff ¡ ¢ 
1 + 2+1 

 ≥ 
1 +  

and Player 1 offers Ã ¡ ¢ ¡ ¢! Ã ¡ ¢! 
1 + 2+1 1 + 2+1 1− 2+2 1 + 2+1   

(−1 −1) =  1−  ≡  . 
1 +  1 +  1 +  1 +  

We can prove this is indeed the equilibrium given by backward induction using math-

ematical induction on . (That  is,  we  first prove that it is true for  = 0; then assuming 

that it is true for some  − 1, we prove that it is true for ) 

Proof. Note that for  = 0, we have the last two periods, identical to the 2-period 

example we analyzed above. Letting  = 0,  we can  easily  check that the  behavior  

described here is the same as the equilibrium behavior in the 2-period game. Now, 

assume that, for some  − 1 the equilibrium is as described above. That is, at the 

beginning of date  + 1 := 2 − 2 ( − 1)− 1 = 2 − 2 + 1, Player  1  offers ⎛ ³ ´⎞ ! 
1 + 2(−1)+1 Ã ¡ ¢ 

1− 2(−1)+2  1− 2  1 + 2−1
(+1 +1) = ⎝  ⎠ =  ;

1 +  1 +  1 +  1 +  

and his offer is accepted. At date  = 2 − 2, Player 1 accepts an offer iff the offer 
(1−2)

is at least as good as having 1
1+
−2
 

 
the next day,  which  is  worth  

1+ . Therefore, he 

accepts an offer ( ) iff ¡ ¢ 
 1− 2

 ≥ ;
1 +  
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as in the strategy profile above. In that case, the best Player 2 can do is to offer Ã ¡ ¢ ¡ ¢! Ã ¡ ¢ ! 
 1− 2  1− 2  1− 2 1 + 2+1 

( ) =   1− =   
1 +  1 +  1 +  1 +  

This is because any offer that gives Player 2 more than  will be rejected in which case 

Player 2 will get ¡ ¢ 
2 1 + 2−1

+1 =  . 
1 +  

In summary, at , Player  2  offers ( ) ;  and it is accepted. Consequently, at  − 1, 
Player 2 accepts an offer ( ) iff ¡ ¢ 

1 + 2+1
 ≥  =  

1 +  

In that case, at − 1, Player  1  offers Ã ¡ ¢! 
1− 2+2 1 + 2+1

(−1 −1) ≡ (1−  ) =    
1 +  1 +  

completing the proof. 

Now, let →∞. At  any  odd  date  , Player 1 will offer Ã ¡ ¢! µ ¶
1− 2+2 1 + 2+1

(∞ 
   

∞) = lim 


=
1 

 

; 
→∞ 1 +  1 +  1 +  1 + 

and any even date , Player 2 will offer Ã !¡ ¢ µ ¶
1− 2 1 + 2+1  1 

(∞ 
   

∞) =  lim   =  ; 
→∞ 1 +  1 +  1 +  1 + 

The offers are barely accepted. 

10.4 Exercises with Solutions 

1. Consider two agents {1 2} owning one dollar which they can use only after they 

divide it. Each player’s utility of getting  dollar at  is  for  ∈ (0 1). Given  

any    0, consider the following -period symmetric, random bargaining model. 

Given any date  ∈ {0 1     − 1},  we toss a fair  coin;  if it comes  Head  (which  

comes with probability 1/2), we select player 1; if it comes Tail, we select player 
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2. The selected player makes an offer ( ) ∈ [0 1]2 
such that  +  ≤ 1. Knowing 

what has been offered, the other player accepts or rejects the offer. If the offer ¡ ¢ 
( ) is accepted, the game ends, yielding payoff vector   . If  the  offer 

is rejected, we proceed to the next date, when the same procedure is repeated, 

except for  =  − 1, after which the game ends, yielding (0,0). The coin tosses 

at different dates are stochastically independent. And everything described up to 

here is common knowledge. 

(a) Compute the subgame perfect equilibrium for	  = 1. What  is  the  value  

of playing this game for a player? (That is, compute the expected utility of 

each player before the coin-toss, given that they will play the subgame-perfect 

equilibrium.) 

Solution: If a player rejects an offer, he will get 0, hence he will accept 

any offer that gives him at least 0. (He is indifferent between accepting 

and rejecting an offer that gives him exactly 0; but rejecting such an offer 

is inconsistent with an equilibrium.) Hence, the selected player offers 0 to 

his opponent, taking entire dollar for himself; and his offer will be accepted. 

Therefore, in any subgame perfect equilibrium, the outcome is (1,0) if it comes 

Head, and (0, 1) if it comes Tail. The expected payoffs are  µ ¶
1 1 1 1 

 = (1 0) + (0 1) =   
2 2 2 2

(b) Compute the subgame perfect equilibrium for  = 2 Compute the expected 

utility of each player before the first coin-toss, given that they will play the 

subgame-perfect equilibrium. 

Solution: In equilibrium, on the last day, they will act as in part (a). Hence, 

on the first day, if a player rejects the offer, the expected payoff of each player 

will be  · 12 =  2. Thus, he will accept an offer if an only if it gives 

him at least 2. Therefore, the selected player offers 2 to his opponent, 

keeping 1 − 2 for himself, which is more than 2, his expected payoff if his 

offer is rejected. Therefore, in any subgame perfect equilibrium, the outcome 

is (1 − 2 2) if it comes Head, and (2 1 − 2) if it comes Tail. The 
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expected payoff of each player before the first coin toss is 

1 1 1 
(1 − 2) + (2) =  
2 2 2 

(c) What is the subgame perfect equilibrium for  ≥ 3. 

Solution: Part (b) suggests that, if expected payoff of each player at the 

beginning of date  + 1  is +12, the expected payoff of each player at the 

beginning of  will be 2. [Note that in terms of dollars these numbers 

correspond to 2 and 1/2, respectively.] Therefore, the equilibrium is follows: 

At any date   − 1, the selected player offers 2 to his opponent, keeping 

1 − 2 for himself; and his opponent accepts an offer iff he gets at least 2; 

and at date − 1, a player accepts any offer, hence the selected player offers 

0 to his opponent, keeping 1 for himself. [You should be able to prove this 

using mathematical induction and the argument in part (b).] 

2. [Midterm 1, 2002] Consider two players  and , who  own  a  firm and want to 

dissolve their partnership. Each owns half of the firm. The value of the firm for 

players  and  are  and , respectively, where     0. Player   sets a 

price  for half of the  firm. Player  then decides whether to sell his share or to 

buy ’s share at this price, . If   decides to sell his share, then  owns the firm 

and pays  to , yielding playoffs  −  and  for players  and , respectively. 

If  decides to buy, then  owns the firm and pays  to , yielding playoffs  

and  −  for players  and , respectively. All these are common knowledge. 

Applying backward induction, find a Nash equilibrium of this game. 

Solution: Given any price , the best response of  is 

buy if  −   , i.e., if   2;
 

sell if   2;
 

{buy, sell} if  = 2
 

In equilibrium,  must be selling at price  = 2.  This is because,  if he were  

buying, then the payoff of  as a function of  would be ( 
 if  ≤ 2; 

 −  if   2 

⎧ ⎪⎪⎨ ⎪⎪⎩
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Figure 10.3: 

which can be depicted as in Figure 10.3. Then, no price could maximize the payoff
 

of , inconsistent with equilibrium (where  maximizes his payoff given what he
 

anticipates). Hence, the equilibrium strategy of  must be
 ( 
buy if   2; 

sell if  ≥ 2 

In that case, the payoff of  as a function of  would be ( 
 if   2; 

 −  if  ≥ 2 

which can be depicted as in Figure 10.4.This function is maximized at  = 2.
 

Player  sets the price as  = 2.
 

3. [Midterm 1, 2006] Paul has lost his left arm due to complications in a surgery.	 He 

is suing the Doctor. 

•	 The court date is set at date 2+1. It is known that if they go to court, the 

judge will order  the Doctor to  pay    0 to Paul. 

•	 They negotiate for a settlement before the court. At each date  ∈ {1 3     2− 1}, 
if they have not yet settled, Paul offers a settlement , and the Doctor decides 

whether to accept or reject it. If she accepts, the game ends with the Doctor 

paying  to Paul; game continues otherwise. At dates  ∈ {2 4     2}, the  
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Figure 10.4: 

Doctor offers a settlement , and Paul decides whether to accept the offer, 

ending the game with Doctor paying  to Paul, or to reject it and continue. 

•	 Paul  pays  his lawyer only a share of the  money he gets from  the  Doctor.  He  

pays (1 − )  if they settle at date ; (1 − )  if they go to court, where 

0       1. The Doctor pays her lawyer  for each day they negotiate 

and an extra   if they go to court. 

•	 Each party tries to maximize the expected amount of money he or she has at 

the end of the game. 

(a) (10 pts) For  = 2, apply backward induction to find an equilibrium of this 

game. (If you answer part (b) correctly, you don’t need to answer this part.) 

(b) (15 pts) For any , apply backward induction to find an equilibrium of this 

game. 

Answer: At date 2+1, Paul  gets   from the doctor and pays (1 − )  to his 

lawyer, netting  . Now  at  date  2, if he accepts 2, he will pay (1 − ) 2 

to his lawyer, receiving 2. Hence, he will accept 2 iff 2 ≥ ()  . The  

doctor will offer 

2 = ()  

instead of going to court and paying    ()  to  Paul  and an extra   to 

her lawyer. Now, at 2−1, the Doctor will accept 2−1 iff 2−1 ≤ () +, 
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as she would pay ()  to Paul next day and an extra  to her lawyer. Paul 

will then offer 

2−1 = () +  

as the settlement will be only () next day. He nets 2−1 =  +  

for himself. Now, at 2− 2, Paul will accept an offer 2−2 iff 2−2 ≥ 2−1 = 

() + , for he could settle for 2−1 next day. (Note that offer gives him 

2−2 and rejection gives him 2−1.) Therefore, the Doctor would offer him 

2−2 = 2−1 

The pattern is now clear. At any odd date , the Doctor accepts an offer iff 

 ≤ +1 + , and  Paul  offers 

 = +1 +  ( is odd). 

At any even date , Paul accepts an offer iff  ≥ +1, and the Doctor offers 

 = +1 ( is even). 

This much is more or less enough for an answer. To be complete, note that 

the solution to the above equations is ( 
 2+1− +  if  is odd 

 =
 2  
 2− 
  + 2  if  is even 

At the beginning, Paul offers 1 = () + , which is barely accepted by 

the Doctor. 

(c) (10 pts) Suppose now that with probability 1/2 the Judge may become sick 

on the court date and a Substitute Judge decide the case in the court. The 

Substitute Judge is sympathetic to doctors and will dismiss the case. In that 

case, the Doctor does not pay anything to Paul. (With probability 1/2, the 

Judge will order the Doctor to pay  to Paul.) How would your answer to 

part (b) change? 

Answer: The expected payment in the court is now 

1 1 
 0 = ·  + · 0 = 2 

2 2 
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Hence, we simply replace  with 2. That  is,  ( 
 2+1− 
2  + 

2  if  is odd 
 =  

 2− 
2  + 

2  if  is even 

10.5 Exercises 

1. [Final, 2000] Consider a legal case where a plaintiff files a suit against a defendant. 

It is common knowledge that, when they go to court, the defendant will have to pay 

$1000,000 to the plaintiff, and $100,000 to the court. The court date is set 10 days 

from now. Before the court date plaintiff and the defendant can settle privately, 

in which case they do not have the court. Until the case is settled (whether in 

the court or privately) for each day, the plaintiff and the defendant pay $2000 

and $1000, respectively, to their legal team. To avoid all these costs plaintiff and 

the defendant are negotiating in the following way. In the first day demands an 

amount of money for the settlement. If the defendant accepts, then he pays the 

amount and they settle. If he rejects, then he offers a new amount. If the plaintiff 

accepts the offer, they settle for that amount; otherwise the next day the plaintiff 

demands a new amount; and they make offers alternatively in this fashion until 

the court day. Players are risk neutral and do not discount the future. Applying 

backward induction, find a Nash equilibrium. 

2. We have a Plaintiff and a Defendant, who is liable for a damage to the Plaintiff. 

If they go to court, then with probability 0.1 the Plaintiff will win and get a 

compensation of amount $100,000 from the Defendant; if he does not win, there 

will be no compensation. Going to court is costly: if they go to court, each of the 

Plaintiff and Defendant will pay $20,000 for the legal costs, independent of the 

outcome in the court. Both the Plaintiff and the Defendant are risk-neutral, i.e., 

each maximizes the expected value of his wealth. 

(a) Consider the following scenario: The Plaintiff first decides whether or not to 

sue the defendant, by filing a case and paying a non-refundable filing fee of 

$100. If he does not sue, the game ends and each gets 0. If he sues, then 

he is to decide whether or not to offer a settlement of amount $25 000. If  
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he offers a settlement, then the Defendant either accepts the offer, in which 

case the Defendant pays the settlement amount to the Plaintiff, or  rejects  

the offer. If the Defendant rejects the offer, or the Plaintiff does not offer a 

settlement, the Plaintiff can either pursue the suit and go to court, or drop 

the suit. Applying backward induction, find a Nash equilibrium. 

(b)  Now  imagine that the  Plaintiff has already paid his lawyer $20,000 for the 

legal costs, and the lawyer is to keep the money if they do not go to court. 

That is, independent of whether or not they go to court, the Plaintiff pays the 

$20,000 of legal costs. Applying backward induction, find a Nash equilibrium. 

under the new scenario. 

3. [Homework 2, 2006] This question is about a tv game, called Deal or No Deal. 

There are two players: Banker and Contestant. There are  cash prizes, 1     , 

which are randomly put in  cases, 1, . . . , . Each permutation is equally likely. 

Neither player knows which prize is in which case. The contestant owns Case 

1. There are  − 1 periods. At each period, Banker makes a cash offer . The  

Contestant is to accept ("Deal") or reject ("No Deal") the  offer. If she accepts 

the offer, the Banker buys the case from the Contestant at price  and the game 

ends. (Banker gets the prize in Case 1 minus , and the Contestant gets .) If she 

rejects the offer, then one of the remaining cases is opened to reveal its content to 

the  players,  and  we  proceed  to  the  next  period.  When  all  the  cases  2,. . . ,   are 

opened, the game automatically ends; the Banker gets 0 and the Contestant gets 

the prize in Case 1. Assume that the utility of having  dollar is  for the Banker 
√ 

and  for the Contestant. Everything described is common knowledge. 

(a) Apply backward induction to find an equilibrium of this game. (Assume that 

the Contestant accepts the offer whenever she is indifferent between accepting 

or rejecting the offer. Solving the special case in part b first may be helpful.) 

(b) What would be your answer if  = 3, 1 = 1, 2 = 100, and  3 = 10000. 

4. [Midterm 1, 2007] [Read the bonus note at the end before you answer 

the question.] This question is about arbitration, a common dispute resolution 

method in the US. We have a Worker, an Employer, and an Arbitrator. They 



171 10.5. EXERCISES 

want to set the wage . If they determine the wage  at date , the payoffs of the  

Worker, the Employer and the Arbitrator will be ,  (1 − ) and  (1 − ), 

respectively, where  ∈ (0 1). The timeline is as follows: 

•	 At  = 0, 
—	 the Worker offers a wage 0; 

—	 the Employer accepts or rejects the offer; 

—	 if she accepts the offer, then the wage is set at 0 and the game ends; 

otherwise we proceed  to  the next date;  

•	 at  = 1, 
—	 the Employer offers a wage 1; 

—	 the Worker accepts or rejects the offer; 

—	 if he accepts the offer, then the wage is set at 1 and the game ends; 

otherwise we proceed  to  the next date;  

•	 at  = 2, the Arbitrator sets a wage 2 ∈ [0 1] and the game ends. 

Compute an equilibrium of this game using backward induction. 

Bonus: If you solve the following variation instead, then you will get extra 10 

points (45 points instead of 35 points). Final Offer Arbitration: At  = 2, the  

Arbitrator sets a wage 2 ∈ {0 1}, i.e., the Arbitrator has to choose one of the 
offers made by the parties. 
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