Homework #4 Solutions

Problem 1

a. The lower bound is 1. If n is even, let X be ((c, c), ..., (b, b)...), where (c, c) is played for n/2 periods and (b, b) is played for n/2 periods. For n odd, X = ((c, c), ..., (b, b), ..., (a, a)), where (c, c) is played for (n - 1)/2 periods, (b, b) is played for (n - 1)/2 periods. The nash equilibrium strategy is to play X as long as X has been played in every previous period, and otherwise play (c, c) for the rest of the game. This is a nash equilibrium because there is no possible deviation for either player. If a player deviates, he will get payoff at most 1 in every future period, so the best he can get by deviating is payoff n, which he is indifferent to.

b. For *n* even, $X_n = ((c, c), ..., (b, b), ..., (a, a))$, where (c, c) is played for n/2 periods, (b, b) is played for n/2-1 periods. If *n* is odd, let *X* be ((c, c), ..., (b, b)...), where (c, c) is played for (n - 1)/2 periods and (b, b) is played for (n + 1)/2 periods. For n = 1, the strategy is to play (b, b), for payoff 2. We prove by induction.

Suppose that for n < T, there is a subgame perfect equilibrium with payoff n + 1. At n = T, the subgame perfect equilibrium is to play X_T as long as everyone has played on the equilibrium path. If a player deviates from playing (c, c) at some period with t rounds remaining, we play X_t as punishment. If a player deviates from playing (b, b) or (a, a), we continue on X_T .

A player that deviates with t rounds remaining gets payoff 1 in that round, and then plays the X_t subgame perfect equilibrium with payoff t+1, for a total of t+2. This will never exceed T+1, so on histories on the equilbrium path there are no profitable deviations. There are no deviations after histories when we are on X_t because they are subgame perfect equilbria, by the inductive hypothesis. Problem 2

a. This is never SPE. Player 2 has payoff 0 in equilibrium, so he can always deivate to R for payoff 1.

b. This is also never SPE, for the same reason.

c. This is always a SPE. In every period, players are playing a stage game nash equilibrium, so the strategy is subgame perfect equilibrium.

Problem 3

(a) Suppose for each cycle, (C,C) is played *a* times and (D,D) is played *b* times. Then average payoff for the cycle is $\frac{5a+b}{a+b}$. To make $1.1 < \frac{5a+b}{a+b} < 1.2$, we need 19a < b < 39a. Let's choose a = 1, b = 20. The strategy profile is for each player, play D for t = 21k + i, for $i = 1, 2, \ldots, 20$ and play C for t = 21k if no deviation has occurred. If any deviation has occurred, play D forever.

No player has incentive to deviate when some player has deviated since (D,D) is NE of the stage game. When a player is supposed to play D at t = 21k + i, to prevent deviation we need

$$6+1\cdot\frac{\delta}{1-\delta} \leq 1\cdot\frac{1}{1-\delta} + 4\delta^{21-i}\frac{1}{1-\delta^{21}}$$

note that the right side of inequality is minimized at i = 1, so we only need to check that case. For $\delta = 0.999$, it holds.

When a player is supposed to play C, to prevent deviation we need

$$6 + 1 \cdot \frac{\delta}{1 - \delta} \le 1 \cdot \frac{1}{1 - \delta} + 4 \cdot \frac{1}{1 - \delta^{21}}$$

For $\delta = 0.999$, it holds.

(b) The strategy profile is that player 1 plays D for t = 4k + i, for i = 0, 1, 2and plays C for t = 4k + 3 and player 2 plays C for all t if no deviation has occurred. If any deviation has occured, play D forever. When (D,C) is supposed to be played, player 1 has no incentive to deviate as he gets the maximum possible payoff. For player 2, we only need to check t = 4k case (similar logic from part a) as if she were to deviate she would have maximum incentive at that case. To prevent deviation we need

$$1\cdot \frac{1}{1-\delta} \leq \delta^3 \cdot 5 \cdot \frac{1}{1-\delta^3}$$

for $\delta = 0.999$, it holds. When (C,C) is supposed to be played, for player 1 we need $6 + 1 \cdot \frac{\delta}{1-\delta} \leq 6 \cdot \frac{1}{1-\delta} - \frac{1}{1-\delta^3}$ and for player 2 we need $6 + 1 \cdot \frac{\delta}{1-\delta} \leq 5 \cdot \frac{1}{1-\delta^3}$. Both holds for $\delta = 0.999$.

(c) The answer is no. To give player 1 the average payoff of more than 5.8. we have to give player to the average payoff of less than 1. Since player 2 can get at least 1 by deviation and can get at least 1 in all static NE, we cannot construct SPE where player 2 gets less than 1 on average.

No player has incentive to deviate when some player has deviated since (D,D)is NE of the stage game.

Problem 4

(a) If $|p_1 - p_2| < c$, we have an interior solution: there is a "mid-point" x^* such that $0 < x^* < 1$ and kid at x^* is indifferent. In other words,

$$cx^* + p_1 = c\left(1 - x^*\right) + p_2$$

so $x^* = \frac{1}{2} + \frac{p_2 - p_1}{2c}$. If $|p_1 - p_2| \ge c$, then all kids go to one firm. To start, we find one stage (static) NE. If $|p_1 - p_2| \ge c$, it cannot be an equilibrium as higher price firm makes zero and has incentive to cut its price so that it can make positive profit. For $|p_1 - p_2| < c$, firm 1 solves

$$max_{p_1}p_1\left\{\frac{1}{2} + \frac{p_2 - p_1}{2c}\right\}$$

Taking FOC, you get $p_1^{BR}(p_2) = \frac{c+p_2}{2}$. Similirly, $p_2^{BR}(p_1) = \frac{c+p_1}{2}$. Thus, $p_1 = p_2 = c$ as NE.

Since this NE is a unique SPE for the stage game, playing this NE for all period is a unique SPE for finite games.

(b-1) Check what would be the best response if the other firm plays p^* . If $p^* - c \ge \frac{p^* + c}{2}$ (or $p^* \ge 3c$), then BR is to charge $p^* - c$ and capture the whole market. In this case, to make sure that there is no incentive to deviate, we need

$$\frac{p^*}{2} \left(1 + \delta + \delta^2 + \cdots \right) \geq (p^* - c) + \frac{c}{2} \left(\delta + \delta^2 + \cdots \right)$$

$$\frac{p^*}{2} \geq (p^* - c) (1 - \delta) + \frac{c\delta}{2}$$
$$(2\delta - 1) p^* \geq (3\delta - 2) c$$

Note that $\hat{p} = c$ here. If $\delta > \frac{1}{2}$, then $p^* \ge \frac{3\delta-2}{2\delta-1}c$. Thus, maximum p^* is \bar{p} . If $\delta = \frac{1}{2}$, then $0 \ge -2c$ works for all p^* , so maximum p^* is \bar{p} .' If $\delta < \frac{1}{2}$, then $p^* \le \frac{2-3\delta}{1-2\delta}c = p_{max}$. If $\delta \ge \frac{1}{3}$, $p_{max} \ge 3c$ so maximum p^* is \bar{p} . If $\delta < \frac{1}{3}$, $p_{max} < 3c$ so the best responce is $\frac{p^*+c}{2}$. In this case, to make sure that there is no incentive to deviate, we need

$$\frac{p^*}{2} \quad 1 + \delta + \delta^2 + \dots \geq \frac{(p^* + c)^2}{8c} + \frac{c}{2} \quad \delta + \delta^2 + \dots$$
$$\frac{p^*}{2} \geq \frac{(p^* + c)^2}{8c} (1 - \delta) + \frac{c\delta}{2}$$

Solving, we get

$$p^* \le \frac{1+3\delta}{1-\delta}c$$

(b-2) Suppose the firm makes u_0 by deviating during the war period. Note that u_0 is zero if $\hat{p} \leq 0$ and positive if $\hat{p} > 0$.

Let V_0 as a sum of current and future profit at the war period. Then $V_0 = \frac{\hat{p}}{2} + \frac{p^*}{2} \frac{\delta}{1-\delta}$ and to prevent deviation during the war state, we need

$$\frac{1}{1-\delta}V_0 \ge u_0 + \frac{\delta}{1-\delta}V_0$$

or $V_0 \ge u_0$. Since $u_0 \ge 0$, the best punishment is to choose $V_0 = u_0 = 0$. This could be done by choosing $\hat{p} = -\frac{\delta}{1-\delta}p^*$.

For collusion period, to prevent deviation we need

$$\frac{p^*}{2} \geq (1-\delta)(p^*-c) + \delta \cdot 0$$
$$\left(\frac{1}{2} - \delta\right)p^* \leq (1-\delta)c$$

Thus, if $\delta \geq \frac{1}{2}$, then $p^* = \overline{p}$. If $\delta < \frac{1}{2}$, then $p^* = \min\left\{\overline{p}, \frac{(1-\delta)c}{\frac{1}{2}-\delta}\right\}$.

14.12 Economic Applications of Game Theory Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.