
Chapter 12 

Repeated Games 

In real life, most games are played within a larger context, and actions in a given situation 

affect not only the present situation but also the future situations that may arise. When 

a player acts in a given situation, he takes into account not only the implications of his 

actions for the current situation but also their implications for the future. If the players 

are patient  and  the  current  actions have significant implications for the future, then the 

considerations about the future may take over. This may lead to a rich set of behavior 

that may seem to be irrational when one considers the current situation alone. Such 

ideas are captured in the repeated games, in which a "stage game" is played repeatedly. 

The stage game is repeated regardless of what has been played in the previous games. 

This chapter explores the basic ideas in the theory of repeated games and applies them 

in a variety of economic problems. As it turns out, it is important whether the game is 

repeated finitely or infinitely many times. 

12.1 Finitely-repeated games 

Let  = {0 1     } be the set of all possible dates. Consider a game in which at each 

 ∈  players play a "stage game" , knowing what each player has played in the past. 

Assume that the payoff of each player in this larger game is the sum of the payoffs that  

he obtains in the stage games. Denote the larger game by  . 

Note that a player simply cares about the sum of his payoffs at the stage games. Most 

importantly, at the beginning of each repetition each player recalls what each player has 

199
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played in each previous play. A strategy then prescribes what player plays at each  as a 

function of the plays at dates 0, . . . , −1. More precisely, let us call the outcomes of the 
previous stage games a history, which will be a sequence (0     −1). A  strategy  in  

the repeated game prescribes a strategy of the stage game for each history (0     −1) 

at each date . 

For example, consider a situation in which two players play the Prisoners’ Dilemma 

game, 
  

 5 5 0 6 

 6 0 1 1 

 (12.1)
 

twice. In that case,  = {0 1} and  is the Prisoners’ Dilemma game. The repeated 

game,  , can be represented in the extensive-form as 
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Now at date  = 1, a history is a strategy profile of the Prisoners’ Dilemma game, 

indicating what has been played at  = 0. There are four histories at  = 1: (), 

(), (), and  (). A strategy is to describe what the player plays at  = 0, and  

what he plays at each of these four histories. (There are 5 actions to be determined.) 

This is rather clear in the extensive-form game above. 

Let us compute the subgame-perfect equilibrium of  ; the equilibrium is depicted 

in the figure.  has four proper subgames, each corresponding to the last-round game 
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after a history of plays in the initial round. For example, after ( ) in the initial 

round, we have subgame 

11 

22 
C D 

C D C D 

10 5 11 6 
10 11 5 6 

where we add  5 to each player’s payoffs, corresponding to the payoff that he gets from 

playing ( ) in the first round. Recall that adding a constant to a player’s payoff 

does not change the preferences in a game, and hence the set of equilibria in this game 

is the same as the original Prisoners’ Dilemma game, which possesses the unique Nash 

equilibrium of ( ). This equilibrium is depicted in the figure. Likewise, in each proper 

subgame, we add some constant to the players’ payoffs, and hence we have ( ) as 

the unique Nash equilibrium at each of these subgames. 

Therefore, the actions in the last round are independent of what is played in the 

initial round. Hence, the players will ignore the future and play the game as if there is 

no future game, each playing . Indeed, given the behavior in the last round, the game 

in the initial round reduces to 
  

 6 6 1 7 

 7 1 2 2 

where we add  1 to each player’s payoffs, accounting for his payoff in the last round. The 

unique equilibrium of this reduced game is ( ). This leads to a unique subgame-

perfect equilibrium: At each history, each player plays . 

What would happen for arbitrary ? The answer remains the same. In the last 

day, , independent of what has been played in the previous rounds, there is a unique 

Nash equilibrium for the resulting subgame: Each player plays . Hence, the actions 

at day  − 1 do not have any effect in what will be played in the next day. Then, we 

can consider the subgame as a separate game of the Prisoners’ Dilemma. Indeed, the 
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reduced game for any subgame starting at − 1 is 

  


 


 

5 + 1 + 1 5 + 1 + 2 0 + 1 + 1 6 + 1 + 2 

6 + 1 + 1 0 + 1 + 2 1 + 1 + 1 1 + 1 + 2 

where 1 is the sum of the payoffs of   from  the previous plays  at  dates  0     −2. Here  

we add  for these payoffs and  1 for  the last round  payoff, all of which are independent 

of what happens at date − 1. This is another version of the Prisoner’s dilemma, which 

has the unique Nash equilibrium of (). Proceeding in this way all the way back to 

date 0, we find out that there is a unique subgame-perfect equilibrium: At each  and 

for each history of previous plays, each player plays . 

That is to say, although there are many repetitions in the game and the stakes in 

the future may be high, any plan of actions other than playing myopically  everywhere 

unravels, as players cannot commit to any plan of action in the last round. This is 

indeed a general result. 

Theorem 12.1 Let  be finite and assume that  has a unique subgame-perfect equi-

librium ∗. Then,   has a unique subgame-perfect equilibrium, and according to this 

equilibrium ∗ is played at each date independent of the history of the previous plays. 

The proof of this result is left as a straightforward exercise. The result can be 

illustrated by another important example. Consider the following Entry-Deterrence 

game, where an entrant (Player 1) decides whether to enter a market or not, and the 

incumbent (Player 2) decides whether to fight or accommodate the entrant if he enters. 

1 Enter 2 Acc. 
(1,1) 

X Fight 

(0,2) (-1,-1) 
(12.2) 

Consider  the game where  the Entry-Deterrence game is repeated  twice,  and  all the  

previous actions are observed. This game is depicted in the following figure. 
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1 Enter 2 Acc. 1 Enter 2 Acc. 
(2,2) 

X Fight X Fight
 

Acc. 2 Enter 1

(1,3) (1,3) (0,0) 

1 Enter 2 Acc.
Fight X (0,0) 

X Fight 
(-1,1) (0,4) 

(-1,1) (-2,-2) 

As depicted in the extensive form, in the repeated game, at  = 1, there  are  three  

possible histories: , (), and  (  ). A strategy of Player 1 assigns 

an action, which has to be either Enter or , to  be  played  at   = 0 and action to  be  

played at  = 1 for each possible outcome at  = 0. In total, we need to determine 4 

actions in order to define a strategy for Player 1. Similarly for Player 2. 

Note that after the each outcome of the first play,  the Entry-Deterrence game is  

played again, where the payoff from the first play is added to each outcome. Since a 

player’s preferences do not change when we add a number to his utility function, each 

of the three games played on the second “day” is the same as the stage game (namely, 

the Entry-Deterrence game above). The stage game has a unique subgame perfect 

equilibrium, where the incumbent accommodates the entrant and the entrant enters the 

market. In that case, each of the three games played on the second day has only this 

equilibrium as its subgame perfect equilibrium. This is depicted in the following. 

1 2Enter 

X 

Acc. 
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1 2Enter 

X 

Acc. 

Fight 

(1,3) (0,0) 

(2,2) 

1 2Enter 

X 

Acc. 
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(0,0) 

12 Enter 

X 

Acc. 

Fight 

(-1,1) 

(1,3) 

(0,4) 

(-1,1) (-2,-2) 

Using backward induction, we therefore reduce the game to the following. 
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1 Enter 2 Acc. 
(2,2) 

X Fight 

(1,3) (0,0) 

Notice that we simply added the unique subgame-perfect equilibrium payoff of 1 

from the second day to each payoff in the stage game. Again, adding a constant to a 

player’s payoffs does not change the game, and hence the reduced game possesses the 

subgame-perfect equilibrium of the stage game as its unique subgame perfect equilibrium. 

Therefore, the unique subgame perfect equilibrium is as depicted below. 

1 2Enter 

X 

Acc. 

Fight 

1 2Enter 

X 

Acc. 

Fight 

(1,3) (0,0) 

(2,2) 

1 2Enter 

X 

Acc. 

Fight 

(-1,1) (-2,-2) 

(0,0) 

12 Enter 

X 

Acc. 

Fight 

(-1,1) 

(1,3) 

(0,4) 

This can be generalized for arbitrary  as above. All these examples show that in 

certain important games, no matter how high the stakes are in the future, the consid-

erations about the future will not affect the current actions, as the future outcomes do 

not depend on the current actions. In the rest of the lectures we will show that these 

are very peculiar examples. In general, in many subgame-perfect equilibria, the patient 

players will take a long-term view, and their decisions will be determined mainly by the 

future considerations. 

Indeed, if the stage game has more than one equilibrium, then in the repeated game 

we may have some subgame-perfect equilibria where, in some stages, players play some 

actions that are not played in any subgame-perfect equilibrium of the stage game. This 

is because the equilibrium to be played on the second day can be conditioned to the 

play on the first day, in which case the “reduced game” for the first day is no longer 

the same as the stage game, and thus may obtain some different equilibria. I will now 
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illustrate this using an example in Gibbons. (See Exercises 1 and 2 at the end of the 

chapter before proceeding.) 

Take  = {0 1} and the stage game  be 

   


 


 


 

1 1 5 0 0 0 

0 5 4 4 0 0 

0 0 0 0 3 3 

Notice that a strategy in a stage game prescribes what the player plays at  = 0 and 

what he plays at  = 1 conditional on the history of the play at  = 0. There  are  9  such  

histories, such as ( ), ( ), etc. A strategy of Player 1 is defined by determining 

an action (,, or  ) for   = 0, and determining an action for each of these histories at 

 = 1 (There will be 10 actions in total.) Consider the following strategy profile: 

Player 1: play  at  = 0; at   = 1, play   if ( ) played at  = 0, and  

play  otherwise. 

Player 2: play  at  = 0; at   = 1, play   if ( ) played at  = 0, 

and play  otherwise. 

According to this equilibrium, at  = 0, players  play  ( ) even though () is 

not a Nash equilibrium of the stage game. Notice that in order for a strategy profile 

to be subgame perfect, after each history, at  = 1, we must have a Nash equilibrium. 

Since ( ) and ( ) are both Nash equilibria of the stage game, this is in fact the 

case. Given this behavior, the first round game reduces to 

   


 


 


 

2 2 6 1 1 1 

1 6 7 7 1 1 

1 1 1 1 4 4 

Here, we add 3 to the payoffs at  ( ) (for it leads to ( ) in the second round) and 

add 1 for the payoffs at the other strategy profiles, for they lead to ( ) in the second 

round. Clearly, ( ) is a Nash equilibrium in the reduced game, showing that the 

above strategy profile is a subgame-perfect Nash equilibrium. In summary, players can 

coordinate on different equilibria in the second round conditional on the behavior in the 
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first round, and the players may play a non-equilibrium (or even irrational) strategies in 

the first round, if those strategies lead to a better equilibrium later. 

When there are multiple subgame-perfect Nash equilibria in the stage game, a large 

number of outcome paths can result in a subgame-perfect Nash equilibrium of the re-

peated game even if it is repeated just twice. But not all outcome paths can be a result 

of a subgame-perfect Nash equilibrium. In the following, I will illustrate why some of 

the paths  can and  some  paths cannot emerge in an  equilibrium  in  the above  example.  

Can (( ) ()) be an outcome of a subgame-perfect Nash equilibrium? The 

answer is No. This is because in any Nash equilibrium, the players must play a Nash 

equilibrium of the stage game in the last period on the path of equilibrium. Since ( ) 

is not a Nash equilibrium of the stage game (( ) ()) cannot emerge in any Nash 

equilibrium, let alone in a subgame-perfect Nash equilibrium. 

Can (() ( )) be an outcome of a subgame-perfect Nash equilibrium in pure 

strategies? The answer is No. Although ( ) is a Nash equilibrium of the stage game, 

in a subgame-perfect Nash equilibrium, a Nash equilibrium of the stage game must 

be played after every play in the first round. In particular, after ( ), the play is 

either ( ) or ( ), yielding 6 or 8, respectively for Player 1. Since he gets only 5 

from (( ) ( )), he has an incentive to deviate to  in the first period. (What 

about if we consider mixed subgame-perfect Nash equilibria or non-subgame-perfect 

Nash equilibria?) 

Can (( ) ( )) be an outcome of a subgame-perfect Nash equilibrium in pure 

strategies? As it must be clear from the previous discussion the answer would be Yes 

if and only if ( ) is played after every play of the period except for ( ). In  that  

case, the reduced game for the first period is 

   


 


 


 

2 2 6 1 1 1 

3 8 5 5 1 1 

1 1 1 1 4 4 

Since ( ) is indeed a Nash equilibrium of the reduced game, the answer is Yes. It is 

the outcome of the following subgame-perfect Nash equilibrium: Play ( ) in the first 

round; in the second round, play ( ) if ( ) is played in the first round and play 

( ) otherwise. 
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As an exercise, check also if (() ()) or (() () ()) can be an 

outcome of a subgame-perfect Nash equilibrium in pure strategies (in twice and thrice 

repeated games, respectively). 

12.2 Infinitely repeated games with observed actions 

Now consider the infinitely repeated games where all the previous moves are common 

knowledge at the beginning of each stage. That is, in the previous section take  = 

{0 1 2   } as the set of natural numbers instead of  = {0 1     }. The  game  

continues indefinitely regardless of what players play along the way. 

For the technically oriented students, the following must be noted. It is implicitly 

assumed throughout the chapter that in the stage game, either the strategy sets are 

all finite, or the strategy sets are convex subsets of R and the utility functions are 

continuous in all strategies and quasiconcave in players’ own strategies. 

12.2.1 Present Value calculations 

In an infinitely repeated game, one cannot simply add the payoffs of each  stage,  as  

the sum becomes infinite. For these games,assume instead that players maximize the 

discounted sum of the payoffs from the stage games. The present value of any given 

payoff stream  = (0 1        ) is computed by 

X∞
  (; ) =   = 0 + 1 + · · ·+  + · · ·   

=0 

where  ∈ (0 1) is the discount factor. The  average value is simply 

X∞
(1 − )   (; ) ≡ (1 − )  

=0 

Note that, for a constant payoff stream (i.e., 0 = 1 = · · ·  =  = · · · ), the average 
value is simply the stage payoff (namely, 0). The present and the average values can 

be computed with respect to the current date. That is, given any , the present  value at  

 is X∞
− (; ) =   =  + +1 + · · ·+ + + · · ·   

= 
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and the average value at  is (1− ) (; ). Clearly,  

  (; ) = 0 + 1 + · · ·+ −1−1 + 
 (; )  

Hence, the analysis does not change whether one uses   or , but using  is 

simpler. In repeated games considered here, each player maximizes the present value 

of the payoff stream he gets from the stage games, which will be played indefinitely. 

Since the average value is simply a linear transformation of the present value, one can 

also use average values instead of present values. Such a choice sometimes simplifies the 

expressions without affecting the analyses. 

12.2.2 Histories and strategies 

Once again, in a repeated game, a history at the beginning of a given date  is the 

sequence of the outcomes of the play at dates 0       − 1. For example, in the Entry-

Deterrence game, the possible outcomes of the stage game are ,  = ( ), 

and  = (  ), and the possible histories are -tuples of these three outcomes 

for each . Examples of histories are 

 · · · and  · · · 

In the repeated Prisoner’s Dilemma, the possible histories are -tuples of ()  ()  (), 

and (), such  as  

() () () () · · · ()  
where  varies. A history at the beginning of date  is denoted by  = (0     −1), 

where 0 is  the outcome  of  stage game in round  0;  is empty when  = 0. For example, 

in the repeated prisoners’ dilemma, (() ()) is a history for  = 2. In  the  repeated  

entry-deterrence game, ( ) is a history for  = 2. 

A strategy in a repeated game, once again, determines a strategy in the stage game 

for each history and for each . The important point is that the strategy in the stage 

game at a given date can vary by histories. Here are some possible strategies in the 

repeated Prisoner’s Dilemma game: 

Grim: Play  at  = 0; thereafter play   if the players have always played 

() in the past, play  otherwise (i.e., if anyone ever played  in the 

past). 
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Naively Cooperate: Play always C (no matter what happened in the past). 

Tit-for-Tat: Play  at  = 0, and  at  each     0, play whatever the other 

player played at − 1. 

Note that strategy profiles (Grim, Grim), (Naively Cooperate, Naively Cooperate) 

and (Tit-for-Tat, Tit-for-Tat) all lead to the same outcome path:1 

(()  ()  ()    )  

Nevertheless, they are quite distinct strategy profiles. Indeed, (Naively Cooperate, 

Naively Cooperate) is not even a Nash equilibrium (why?), while (Grim, Grim) is a 

subgame-perfect Nash equilibrium for large values of . On the other hand, while (Tit-

for-Tat, Tit-for-Tat) is a Nash equilibrium for large values of , it is not subgame-perfect. 

All these will be clear momentarily. 

12.2.3 Single-deviation principle 

In an infinitely repeated game, one uses the single-deviation principle in order to check 

whether a strategy profile is a subgame-perfect Nash equilibrium. In such a game, single-

deviation principle takes a simple form and is applied through augmented stage games. 

Here, augmented refers to the fact that one simply augments the payoffs in the stage 

game by adding the present value of future payoffs under the purported equilibrium. One 

may also use the term reduced game instead of augmented stage game, interchangeably. 

Augmented Stage Game (aka Reduced Game) Formally consider a strategy 
∗ ∗ ∗ ∗ profile  = (1 2     ) in the repeated game. Consider any date  and any history 

 = (0     −1), where  0 is  the outcome  of  the play at date  0 . Augmented stage game 

for ∗ and  is  the same game as the  stage  game  in  the repeated game except that the  

payoff of each player  from each terminal history  of the stage game is 

 (| ∗  ) =  () + +1 (   ∗ ) 

where  () is the stage-game payoff of player  at  in the original stage game, and 

+1 (  
∗) is the present value of player  at +1 from the payoff stream that results 

1Make sure that you can compute the outcome path for each strategy profile above. 
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when all players follow ∗ starting with the history ( ) = (0     −1 ), which  is  a  

history at the beginning of date + 1. Note  that   (|∗ ) is the time  present value 
of the payoff stream that results when the outcome of the stage game is  in round  and 

everybody sticks to the strategy profile ∗ from the next period on. Note also that the 

only difference between the original stage game and the augmented stage game is that 

the payoff in the augmented game is  (|∗ ) while the payoff in the original game is 

 (). 

Single-deviation principle now states that a strategy profile in the repeated game is 

subgame-perfect if it always yields a subgame-perfect Nash equilibrium in the augmented 

stage game: 

Theorem 12.2 (Single-Deviation Principle) Strategy profile ∗ is a subgame-perfect 

Nash equilibrium of the repeated game if and only if (1 
∗ ()       

∗ ()) is a subgame-

perfect Nash equilibrium  of  the augmented  stage game for  ∗ and  for every date  and 

every history  at the beginning of . 

Note that  
∗ () is what player  is supposed to play at the stage game after history 

 at date  according to ∗ . Hence, ∗  () is a strategy in the stage game as well as 

a strategy in the augmented stage game. Therefore, (1 
∗ ()       

∗ ()) is a strategy 

profile in the augmented stage game, and a potential subgame-perfect Nash equilibrium. 

Note also that, in order to show that ∗ is a subgame-perfect Nash equilibrium, one 

must check for all histories  and dates  that ∗ yields a subgame-perfect Nash equi-

librium in the augmented stage game. Conversely, in order to show that ∗ is not a 

subgame-perfect Nash equilibrium, one only needs to find one history (and date) for 

which ∗ does not yield a subgame-perfect Nash equilibrium in the augmented stage 

game. Finally, although the above result considers pure strategy profile ∗ the same 

result is true for mixed strategies. The result is stated that way for clarity. The rest of 

this section is devoted to illustration of single-deviation principle on infinitely repeated 

Entry Deterrence and Prisoners’ Dilemma games. 

Infinitely Repeated Entry Deterrence Towards illustrating the single-deviation 

principle when the stage game is dynamic, consider the infinitely repeated Entry-Deterrence 

game in (12.2). Consider the following strategy profile. 
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At any given stage, the entrant enters the market if an only if the incum-

bent has accommodated the entrant sometimes in the past. The incumbent 

accommodates the entrant if an only if he has accommodated the entrant 

before.2 

Using the single-deviation principle, we will now show that for large values of , this  a  

subgame-perfect Nash equilibrium. The strategy profile puts the histories in two groups: 

1. The histories at which there was an entry and the incumbent has accommodated; 

the histories that contain an entry , and  

2.	 all the other histories, i.e., the histories that do not contain the entry  at any 

date. 

Consequently, in the application of single-deviation principle, one puts histories in 

the above two groups, depending on whether the incumbent has ever accommodated 

any entrant. First take any date  and any history  = (0     −1) in the first group, 

where incumbent has accommodated some entrants. Now, independent of what happens 

at , the  histories at  + 1 and later will contain a past instance of accommodation  

(before ), and according to the strategy profile, at  + 1  and on, entrant will always 

enter and incumbent will accommodate, each player getting the constant stream of 1s. 

The present  value of this at  + 1 is 

 = 1 +  + 
2 + · · · = 1 (1− )  

That is, for every outcome  ∈ {}, +1 (  
∗) = . Hence, the aug-

mented stage game for  and ∗ is 

11 2EnterEnter 2 Acc.Acc. 
(1(1++VVAA,1,1++VVAA)) 

XX FightFight 

0+0+VVAA -1+-1+VVAA
 

2+2+VVAA -1+-1+VVAA
 

2This is a switching strategy, where initially incumbent fights whenever there is an entry and the 

entrant never enters. If the incumbent happens to accommodate an entrant, they switch to the new 

regime where the entrant enters the market no matter what the incumbent does after the switching, 

and incumbent always accommodates the entrant. 
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For example, if the incumbent accommodates the entrant at , his present value (at 

) will be 1 + ; and if he fights his present value will be −1 + , and  so  on.  

This is another version of the Entry-Deterrence game, where the constant  is added 

to the payoffs. The strategy profile ∗ yields (Enter, Accommodate) for round  at 

. According to single-deviation principle, (Enter, Accommodate) must be a subgame-

perfect equilibrium of the augmented stage game here. This is indeed the case, and ∗ 

passes the single-deviation test for such histories. 

Now for some date  consider a history  = (0     −1) in the second group, where 

the incumbent has never accommodated the entrant before, i.e., 0 differs from  for 

all 0 . Towards constructing the augmented stage game for , first consider the outcome 

 =  at . In that case, at the beginning of  + 1, the history is ( ), which  

includes  as in the previous paragraph. Hence, according to ∗, Player  1  enters  and  

Player 2 accommodates at +1, yielding a history that contains  for the next period. 

Therefore, in the continuation game, all histories are in the first group (containing ), 

and the play is (Enter, Accommodate) at every 0  , resulting in the outcome path 

(     ). Starting from  + 1, each player gets 1 for each date, resulting the 

present value of +1 (  ∗) = . Now consider another outcome  ∈ { }
in period . The continuation play for other outcomes is quite different now.  At the  

beginning of +1, the history ( ) is either ( ) or (  ). Since   does not contain 

, neither does ( ). Hence, according to ∗, at   + 1, Player 1 exits, and Player 2 

would have chosen Fight if there were an entry, yielding outcome  for period  + 1. 

Consequently, at any 0  +1, the history is (        ), and Player 1 chooses to 

exit at 0 according to ∗ . This results in the outcome path (      ). Therefore,  

starting from +1, Player 1 gets 0 and Player 2 gets 2 every day, yielding present values 

of 1+1 (  ∗) = 0. and  

2+1 (   ∗ ) =  = 2 + 2 + 2
2 + · · · = 2 (1− )  
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respectively. Therefore, the augmented stage game for  and ∗ is now 

11 EnteEnte 2rr 2 AccAcc..
 
(1(1++VVAA,1+,1+VVAA)) 

XX FightFight 

0+0+00 -1+-1+00
 
2+2+VVFF -1+-1+VVFF
 

At this history the strategy profile prescribes ( ), i.e., the entrant does not 

enter, and if he enters, the incumbent fights. Single-deviation principle requires then 

that (  ) is a subgame-perfect equilibrium of the above augmented stage game. 

Since  is a best response to Fight, we only need to ensure that Player 2 weakly prefers 

Fight to Accommodate after the entry in the above game. For this, we must have 

−1 +  ≥ 1 +  

Substitution of the definitions of  and  in  this  inequality  shows that this is equivalent  

to3 

 ≥ 23 

We have considered all possible histories, and when  ≥ 23, the strategy profile 

has passed the single-deviation test. Therefore, when  ≥ 23, the strategy profile is a 

subgame-perfect equilibrium. 

On the other hand, when    23, ∗ is not a subgame-perfect Nash equilibrium. To 

show this it suffices to consider one history at which ∗ fails the single-deviation test. For 

a history   in the second group, the augmented stage game is as above, and ( ) 

is not a subgame-perfect equilibrium of this game, as 1 +   −1 +  . 

Infinitely Repeated Prisoners’ Dilemma When the stage game is a simultaneous 

action game, there is no distinction between subgame-perfect Nash equilibrium and Nash 

equilibrium. Hence, for single-deviation test, one simply checks whether ∗ () is a Nash 

3The inequality is  ( − ) ≥ 2. Substituting the values of  and , we obtain   (1 − ) ≥ 2, 

i.e.,  ≥ 23. 
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equilibrium of the augmented stage game for  for every history . This simplifies the 

analysis substantially because one only needs to compute the payoffs without deviation 

and with unilateral deviations in order to check whether the strategy profile is a Nash 

equilibrium. 

As an example, consider the infinitely repeated Prisoner’s dilemma game in (12.2). 

Consider the strategy profile (Grim,Grim). There are two kinds of histories we need to 

consider separately for this strategy profile. 

1. Cooperation: Histories in which  has never been played by any player. 

2. Defection: Histories in which  has been played by some one at some date. 

First consider a Cooperation history for some . Now if both players play , then  

according to (Grim,Grim), from  +1 on each player will play  forever. This yields the 

present value of 

 = 5 + 5 + 5
2 + · · · = 5 (1− ) 

at  + 1. If any player plays , then  from   + 1  on, all the histories will be Defection 

histories and each will play  forever. This yields the present value of 

 = 1 +  + 
2 + · · · = 1 (1− ) 

at  + 1. Now,  at  , if they  both  play  , then the payoff of each player will be 5 +  . 

If Player 1 plays  while Player 2 is playing C, then Player 1 gets 6 + , and  Player  

2 gets  0 + . Hence, the augmented stage game at the given history is 

  


 


 

5 +   5 +  0 +  6 +  

6 +  0 +  1 +  1 +  

To pass the single-deviation test, (C,C) must be a Nash equilibrium of this game.4 (That 

is, we fix a player’s action at  and check if the other player has an incentive to deviate.) 

4It is important to note that we do not need to know all the payoffs in the reduced game. For 

example, for this history we only need to check if ( ) is a Nash equilibrium of the reduced game, and 

hence we do not need to compute the payoffs from  ( ). In this example, it was easy to compute. 

In general, it may be time consuming to compute the payoffs for all strategy profiles. In that case, it 

will save a lot of time to ignore the strategy profiles in which more than one player deviates from the 

prescribed behavior at . 
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This  is  the case if  and  only  if  

5 +  ≥ 6 +  

i.e., 

 ≥ 15 

We also need to consider Defection histories. Consider a Cooperation history for 

some . Now, independent of what is played at , according to (Grim,Grim), from  + 1  

on we will have defection histories and each player will play  forever. The present 

value of payoffs from   + 1  on will always be . Then, the augmented stage game at 

this history is 
  


 


 

5 +  5 +  0 +  6 +  

6 +  0 +  1 +  1 +  

Single-deviation test for (Grim,Grim) requires that ( ) is a Nash equilibrium of this 

game,5 and in fact ( ) is the only Nash equilibrium. 

Since (Grim,Grim) passes the single-deviation test at each history, it is a subgame-

perfect Nash equilibrium when  ≥ 15.6 

We will now use the same technique to show that (Tit-for-tat,Tit-for-tat) is not a 

subgame-perfect Nash equilibrium (except for the degenerate case  = 15). Tit-for-tat 

strategies at  + 1  only depends on what is played at  not any previous play. If ( ) 

is played at , then  starting  at   + 1 and we will have ( ) throughout, and hence the 

vector of present values at  + 1 will be µ ¶
5 
 
5 

= (1 1) +  (1 1) + 2 (1 1) + · · ·   
1−  1− 

If ( ) is played at , then according to (Tit-for-tat,Tit-for-tat) the sequence of plays 

starting at  + 1 will be 

( ) ( ) ( ) ( ) · · ·  
with  + 1-present value of µ ¶

6 
 
6 

= (6 0) +  (0 6) + 2 (6 0) + +3 (0 6) + 4 (6 0) · · ·   
1− 2 1− 2 

5Once again, to check this, we do not need to know the payoffs for  ( ). 
6Once again, it is not a subgame-perfect Nash equilibrium when    15. In  that  case,  it  suffices to 

show that ( ) is not a Nash equilibrium of the augmented stage game for a Cooperation history. 
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Similarly if ( ) is played at , then   + 1-present value will be µ ¶
6 6 
 

1− 2 1− 2 

After ( ) at , we  will  have  ( ) throughout, yielding +1-present value (1 (1− )  1 (1− )). 

In order to show that (Tit-for-tat,Tit-for-tat) is not a subgame-perfect Nash equilib-

rium, we will consider two histories. [To show a strategy profile is not subgame-perfect, 

one only needs to find a case where it fails the single-deviation principle.] Given the 

above continuation games, the reduced game at any  for any previous history is 

  

 5 +  5 
1−  5 +  

5 
1− 0 +  6 

1−2  6 +  6 1−2 

 6 +  6 
1−2  0 +  6 

1−2 1 +  (1− )  1 +  (1− ) 

 

1. Consider  = 0, when (Tit-for-tat,Tit-for-tat) prescribes ( ). Single-deviation 

principle then requires that ( ) is a Nash equilibrium of the reduced game 

above. That is, we must have 

5 6 
5 +  

1−  
≥ 6 +  

1− 2  

2. Consider a history in which ( ) is played at  − 1. Now according to (Tit-for-

tat,Tit-for-tat) we must have ( ) at . Single-deviation principle now requires 

that ( ) is a Nash equilibrium of the above game. That is, we must have 

6 5 
6 +  ≥ 5 +   

1− 2 1−  

the opposite of the previous requirement. 

Hence, (Tit-for-tat,Tit-for-tat) is not a subgame-perfect Nash equilibrium, unless 

6 +  6 = 5 +  5 , or  equivalently   = 15.
1−2 1− 

12.3 Folk Theorem 

A main objective of studying repeated games is to explore the relation between the short-

term incentives (within a single period) and long term incentives (within the broader 

repeated game). Conventional wisdom in game theory suggests that when players are 
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patient, their long-term incentives take over, and a large set of behavior may result in 

equilibrium. Indeed, for any given feasible and "individually rational" payoff vector and 

for sufficiently large values of , there exists some subgame perfect equilibrium that 

yields the payoff vector as the average value of the payoff stream.  This fact is called  the  

Folk Theorem. This section is devoted to presenting a basic version of folk theorem and 

illustrating its proof. 

Throughout this section, it is assumed that the stage game is a simultaneous action 

game ( ) where set  = {1     } is the set of players,  = 1 × · · · ×  is a 

finite set of strategy profiles, and  :  → R is the stage-game utility functions. 

12.3.1 Feasible Payoffs 

Imagine that the players collectively randomize over stage game strategy profiles  ∈ . 

Which payoff vectors could they get if they could choose any probability distribution P 
 :  → [0 1] on ? (Recall that ∈  () = 1.) The answer is: the set  of payoff 

vectors  = (1     ) such that X 
 =  () (1 ()       ()) 

∈ 

for some probability distribution  :  → [0 1] on . Note  that   is the smallest convex 

set that contains all payoff vectors (1 ()       ()) from pure strategy profiles in the 

stage game. A payoff vector  is said to be feasible iff  ∈  . Throughout this section, 

 is assumed to be -dimensional. 

For a visual illustration consider the Prisoners’ Dilemma game in (12.1). The set  

is plotted in Figure 12.1. Since there are two players,  contains pairs  = (1 2). The  

payoff vectors from pure strategies are (1 1), (5 5), (6 0), and  (0 6). The set  is the 

diamond shaped area that lies between the lines that connect these four points. 

Note that for every strategy profile  in the repeated game, the average payoff vector 

from  is in  .7 This also implies that the same is true for mixed strategy profiles in the 

repeated game. Conversely, if the players can collectively randomize on strategy profiles 

7Indeed, the average payoff vector can be written as X 
 () =   () (1 ()       ()) 

∈ 
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Figure 12.1: Feasible payoffs in Prisoners’ Dilemma 

in the repeated games, all vectors  ∈  could be obtained as average payoff vectors. 

(See also the end of the section.) 

12.3.2 Individual Rationality–MinMax payoffs 

There is a lower bound on how much a player gets in equilibrium. For example, in 

the repeated prisoners’ dilemma, if one keeps playing defect everyday no matter what 

happens, he gets at least 1 every day, netting an average payoff of 1 or more. Then, 

he must get at least 1 in any Nash equilibrium because he could otherwise profitably 

deviate to the above strategy. 

Towards finding a lower  bound on the  payoffs from pure-strategy Nash equilibria, for 

where X 
 () = (1− ) 

∈ 

and  is the set of dates at which  is played on the outcome path of . Clearly,  X X X X 
  () = (1− ) = (1− ) = 1 

∈ ∈ ∈ ∈ 
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each player  define pure-strategy minmax payoff as 

 = min  max  ( −)  (12.3) 
−∈− ∈ 

Here, the other players try to minimize the payoff of player  by choosing a pure strategy 

− for themselves, knowing that player  will play a best response to −. Then, the 

harshest punishment they could inflict on  is . For example, in the prisoners’ dilemma 

game,  = 1 because  gets maximum of 6 if the other player plays  and gets maximum 

of 1 if the other player plays . 

Observe that in any  pure-strategy Nash equilibrium ∗ of the repeated game, the 

average payoff of player  is at least . To see this, suppose that the average payoff of 

 is less than  in ∗ . Now consider the strategy ̂, such that for each history , ̂ () 

is a stage-game best response to −
∗ 
 (), i.e., ¡ ¢ ¡ ¢ 

 ̂ ()  −
∗ 
 () = max   −

∗ 
 ()  

∈ 

Since ¡ ¢ 
max    ∗ () ≥  −
∈ ¡ ¢ 

for every , this implies that the average payoff from ̂ ∗ is at least 1, giving player − 
 an incentive to deviate. 

A lower bound for the average payoff from a mixed strategy Nash equilibrium is given 

by minmax payoff, defined as X Y 
 = min  max  ( ) ( −)  (12.4) 

  6 ∈= 
−∈− =6  

where  is a mixed strategy of  in the stage game. Similarly to pure strategies one can 

show that the average payoff of player  is at least  in any Nash equilibrium (mixed 

or pure). Note that, by definition,  ≤ . The equality can be strict. For example, in 

the matching penny game 
Head Tail 

Head
 

Tail
 

−1 1 1−1 
1−1 −1 1 

the pure-strategy minmax payoff  is 1 while minmax payoff  is 0. (This is obtained 

when  () =   () = 12.) For the sake of exposition, it is assumed that 

(1     ) ∈  . 

A payoff vector  is said to be individually rational iff  ≥  for every  ∈  . 
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12.3.3 Folk Theorem 

I will next present a general folk theorem and illustrate the main idea of the proof for a 

special case. 

Theorem 12.3 (Folk Theorem) Let  ∈  be such that    for every player . 
¯Then, there exists  ∈ (0 1) such that for every    ̄ there exists a subgame-perfect 

equilibrium of the repeated game under which the average value of each player  is . 

Moreover, if    for every  above, then the subgame-perfect equilibrium above is in 

pure strategies. 

he Folk Theorem states that any strictly individually rational and feasible payoff 

vector can be supported in subgame perfect Nash equilibrium when the players are 

sufficiently patient. Since all equilibrium payoff vectors need to be individually rational 

and feasible, the Folk Theorem provides a rough characterization of the equilibrium 

payoff vectors when players are patient: the set of all feasible and individually rational 

payoff vectors. 

I will next illustrate the main idea of the proof for a special case. Assume that, in the 

theorem,  = (1 (
∗)       (

∗)) for some ∗ ∈  and there exists a Nash equilibrium 

̂ of the stage game such that    (̂) for every . In the prisoners’ dilemma example, 

∗ = (), yielding  = (5 5), and  ̂ = (), yielding payoff vector (1 1). Recall  

that in that case one could obtain  from strategy profile (Grim, Grim), which is a 

subgame-perfect Nash equilibrium when   15. The main idea here is a generalization 

of Grim strategy. Consider the following strategy profile ∗ of the repeated game: 

Play ∗ until somebody deviates, and play ̂ thereafter. 

Clearly, under ∗, the average value of each player  is  (∗) =  . Moreover,  ∗ is a 

subgame-perfect Nash equilibrium when  is large. To see this, note that ∗ passes the 

single-deviation test at histories with previous deviation because ̂ is a Nash equilibrium 

of the stage game. Now consider a history in which ∗ is played throughout. In the 

augmented stage game (with average payoffs), the payoff from ∗ is  because they will 

keep playing ∗ forever after that play. The payoff from any other  ∈  is 

(1 − )  () +   (̂)
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because the players will switch to ̂ after any such play. Then, ∗ is a Nash equilibrium 

of the augmented stage game if and only if ¡ ¢ 
 ≥ (1 − )max    ∗ +  (̂) (12.5) −

 

for every player . Let  ¢¡
max   

∗ −  
 = ¡ −¢ 

max   
∗ −  (̂)− 

be the discount rate for which (12.5) becomes equality; such   1 exists because 

max  
¡
 

∗ ¢ ≥  (∗) =   ). Take  ̄ = max  {1     }. Then, for every −   (ˆ

   ̄, inequality (12.5) holds, and hence ∗ is a Nash equilibrium of the augmented 

stage game. Therefore, ∗ is a subgame-perfect Nash equilibrium whenever    ̄. Note  

that in the case of prisoners’ dilemma, ̄ = (6  − 5)  (6 − 1) = 15. 

In the above illustration, the vector  is obtained from playing the same ∗. What  

if this is not possible, i.e.,  is a convex combination of payoff vectors from  ∈  but 

 6  () for any  ∈ .= In that case,  one can  use time averaging  to  obtain   from 

pure strategy in the repeated game. For an illustration, consider (2 2) in the repeated 

Prisoners’ Dilemma game. Note that 
1 3 1 

(2 2) = (5 5) + (1 1) = (1 1) + (4 4)  
4 4 4 

We could obtain average payoff vectors near (2 2) in various ways. For example, consider 

the path 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) · · · ( ) ( ) ( ) ( ) · · ·  
The average  value of each player from  this path is  

1 −  4 
1 +  4 = 1 +   

1 − 4 1 +   + 2 + 3 

As  → 1, this value approaches 2. Another way to approximate (2 2) would be first to 

play ( ) then switch to ( ). For  example,  let  ∗ be the smallest integer for which 


∗ ∼≤ 14. Note that when  is large, 

∗ 

= 14. Now consider the path on which ( ) 

is played for every   ∗ and ( ) is played for every  ≥ ∗ . The average value is ¡
1 − 

∗ ¢ 
5 ∼· 1 +  
∗ 

= 2 

Here, I approximated  by time averaging. When  is large, one can obtain each  exactly 

by time averaging.8 

8For mathematically oriented students: imagine writing each weight  () ∈ [0 1] in base 1. 
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12.4 Exercises with Solutions 

1. Consider the -times repeated game with the following stage game 

   

 

 

 

3 3 0 0 0 0 

0 0 2 2 1 0 

0 0 0 1 0 0 

(a) Find a lower bound  for the average payoff of each player in all pure strategy 

Nash equilibria. Prove indeed that the payoff of a player is at least  in 

every pure-strategy Nash equilibrium. 

Solution: Note that the pure strategy minmax payoff of each player is 1. 

Hence, the payoff of a player cannot be less than . Indeed, if a player 

mirrors what the other player is supposed to play in any history at which the 

other player plays   or  according to the equilibrium and play  if the other 

player is supposed to play  at the history, then his payoff would be at least 

. Since he plays a best response in equilibrium, his payoff is at least that 

amount. This lower bound is tight. For  = 2   1, consider the strategy 

profile 

Play ( ) for the first  periods and ( ) for the last  periods; if any player 

deviates from this path, play ( ) forever. 

Note that the payoff from this strategy profile is . To check that this is 

a Nash equilibrium, note that the best possible deviation is to play play  

forever, which yields , giving no incentive to deviate. Note also that the 

quilibrium here is not subgame-perfect. 

(b) Construct a pure-strategy subgame-perfect Nash equilibrium in which the 

payoff of each player is at most  + 1. Verify that the strategy profile is 

indeed a subgame-perfect Nash equilibrium. 

Solution: Recall that  = {0     − 1}. For   = 1, ( ) is the desired 

equilibrium. Towards a mathematical induction, now take any    1 and 

assume that for every   , the  -times repeated game has a pure-strategy 

subgame-perfect Nash equilibrium ∗ [] in which each player gets +1. For  
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-times repeated game, consider the path 

( ) · · · ( ) ( ) · · · ( )| {z } | {z }
( − 1) 2 times ( + 1)  2 times 

if  is odd and the path 

( ) · · · ( ) ( ) · · · ( ) ( )| {z } | {z }
2 times 2 − 1 times 

if  is even. Note that the total payoff of each player from this path is  +1. 

Consider the following strategy profile. 

Play according to the above path; if any player deviates from this path at 

any  ≤ 2 − 1, switch  to  ∗ [ −  − 1] for the remaining ( −  − 1)-times 

repeated game; if any player deviates from this path at any   2, remain  

on the path. 

This is a subgame-perfect Nash equilibrium. There are three classes of histo-

ries to check. First, consider a history in which some player deviated from the 

path at some 0 ≤ 2. In that case, the strategy profile already prescribes 

to follow the subgame-perfect Nash equilibrium ∗ [ − 0 − 1] of the subgame 

that starts from 0 + 1, which remains subgame perfect at the current sub-

game as well. Second, consider a history in which no player has deviated from 

the path at any  0 ≤ 2 and take   2. In the continuation game, the 

above strategy profile prescribes: play ( ) every day if  is odd and play 

( ) every day but the last day and play ( ) on the last day if  is even. 

Since ( ) and ( ) are Nash equilibria of the stage game, this is clearly a 

subgame-perfect equilibrium of the remaining game. Finally, take  ≤ 2 

and consider any on-the path history. Now, a player’s payoff is  + 1  if he 

follows the strategy profile. If he deviates at ,  he gets at most 1  at   and 

( −  − 1) + 1 ≤  from the next period on, where ( −  − 1) + 1 is his 

payoff from ∗ [ −  − 1]. His total payoff cannot exceed  + 1, and he has 

no incentive to deviate. 

2. Consider the infinitely repeated prisoners’ dilemma game of (12.1) with discount 

factor  = 0999. 



224 CHAPTER 12. REPEATED GAMES 

(a) Find a subgame-perfect Nash equilibrium in pure strategies under which the 

average payoff of each player is in between 1.1 and 1.2. Verify that your 

strategy profile is indeed a subgame-perfect Nash equilibrium. ³ ´ 
 Solution: Take any ̂ with 1 − ˆ + 5

ˆ
= 1 + 4̂ ∈ (11 12), e.g., any ̂

between 2994 and 3687. Consider the strategy profile 

Play ( ) at any   ̂ and ( ) at ̂ and thereafter. If any player deviates 

from this path, play ( ) forever. ³ ´ 
Note that the average value of each player is 1 − ˆ + 5̂ ∈ (11 12). To  

check that it is a subgame-perfect Nash equilibrium, first take any on-path 

history with date  ≥ ̂. At that history, the average value of each player is 

5. If a player deviates, then his average value is only 6 (1  − ) +   = 105. 

Hence, he has no incentive to deviate. For   ̂, the average value is ³ ´ ³ ´ 
ˆ ˆ ˆ ˆ− − ≥  1 −  + 5 1 −  + 5  11 

If he deviates, his average value is only . Therefore, he does not have an 

incentive to deviate, once again. Since they play static Nash equilibrium after 

switch, there is no incentive to deviate at such a history, either. Therefore, 

the strategy profile above is a subgame-perfect Nash equilibrium. 

(b) Find a subgame perfect Nash equilibrium in pure strategies under which the 

average payoff of player 1 is at least 57. Verify that your strategy profile is 

indeed a subgame-perfect Nash equilibrium. ³ ´ 
   Solution: Take any ̂ with 1 − ˆ 6 + 5ˆ = 6  − ˆ ∈ (57 58), i.e., ˆ ∈ 

(02 03). The possible values for ̂ are the natural numbers from 1204 to 

1608. Consider the strategy profile 

Play ( ) at any   ̂ and ( ) at ̂ and thereafter. If any player deviates 

from this path, play ( ) forever. 
Note that the average value of Player 1 is 6 − ˆ, taking values between 

6 − 09991204 = 57002 and 6 −09991608 = 57999. Note also that the strategy 

profile coincides with the one in part (a) at all off-the-path histories and at 

all on-the-path histories with  ≥ ̂. Hence, to check whether it is a subgame-

perfect Nash equilibrium, it suffices to check for on-the-path histories with 

  ̂. At any such history, clearly, Player 1 does not have an incentive to 
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deviate (as in part (a)). For Player 2, the average value is 

̂− ≥ 5̂ ≥ 099916085 ∼5 = 10006 

If he deviates, his average value is only 1 (getting 1 instead of 0 on the first 

day and getting 1 forever thereafter). Therefore, he does not have an incentive 

to deviate. Therefore, the strategy profile above is a subgame-perfect Nash 

equilibrium. 

(c) Can you find a subgame-perfect Nash equilibrium under which the average 

payoff of player 1 is more than 5.8? 

Answer: While the average payoff of Player 1 can be as high as 5.7999, it 

cannot be higher than 5.8. This is because 1  1 for any feasible  with 

1  58. Such an individually irrational payoff cannot result in equilibrium 

because Player 2 could do better by simply playing  at every history (as 

discussed in the text). 

3. [Midterm 2, 2006] Two firms, 1 and 2, play the following infinitely repeated game 

in which all the previous plays are observed, and each player tries to maximize 

the discounted sum of his or her profits at the stage games where the discount 

rate is  = 099. At each date , simultaneously, each firm  selects a price 

 ∈ {001 002     099 1}. If  1 = 2, then  each  firm sells 1 unit of the good; 

otherwise, the cheaper firm sells 2 units and the more expensive firm sells 0 units. 

Producing the good does not cost anything to firms. Find a subgame-perfect equi-

librium in which the average value of Firm 1 is at least 1.4. (Check that the 

strategy profile you construct is indeed subgame-perfect equilibrium.) 

Solution: (There are several such strategy profiles; I will show one of them.) In 

order for the average value to exceed 1.4, the present value must exceed 140. We 

can get average value of approximately 1.5 for player 1 by alternating between 

(099 1), which  yields  (198 0), and  (1 1), which yields (1 1). The average value 

of that payoff stream for player 1 is 

198 +  ∼= 149 
1 +   

Here is a SPE with such equilibrium play: At even dates play (099 1) and at odd 

http:0�01�0�02�����0�99�1}.If
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dates play (1 1); if any player ever deviates from this scheme, then play (001 001) 

forever. 

We use the single-deviation principle, to check that this is a SPE. First note that 

in "deviation" mode, they play a Nash equilibrium of the stage game forever, and 

it passes the single-deviation test. Now, consider an even  and a history where 

there has not been any deviation. Player 1 has no incentive to deviate: if he follows 

the strategy, he will get the payoff stream 1.98, 1, 1.98, 1, 1.98, . . . ; if he deviates, 

he will get , 0.01, 0.01, . . . where  ≤ 196 ( = 1  for upward deviation). For 

player 2: if he plays according to the strategy, he will get the payoff stream of 0, 

1, 0, 1, 0, 1, . . . with present value of 

¡ ¢ 
 1 − 2 ∼= 4975 

If he deviates, he will get , 0.01, 0.01, . . . where  ≤ 196. (The best deviation is 

2 = 098.) This yields present value of 

 + 001 ·  (1 − ) =   + 1  ≤ 296 ¿ 4975 

He has no incentive to deviate. We also need to check an even date  with no 

previous deviation. Now the best deviation is to set price 0.99 and get 1.98 today 

and get 0.01 forever, which yields the present value of 2.98. This is clearly lower 

than what each player gets by sticking to their strategies (148.5 for player 1, and 

50.25 for player 2). 

4. [Midterm 2, 2011] Alice and Bob are a couple, playing the infinitely repeated game 

with the following stage game and discount factor . Every day, simultaneously, 

Alice and Bob spend  ∈ [0 1] and  ∈ [0 1] fraction of their time in their 

relationship, respectively, receiving the stage payoffs  = ln ( + ) + 1  −  

and  = ln ( + ) + 1  − , respectively. (Alice and Bob are denoted by  

and , respectively.) For each of the strategy profiles below, find the conditions 

on the parameters for which the strategy profile is a subgame-perfect equilibrium. 

Solution: It is useful to note that ( 1 − ) is a Nash equilibrium of the stage 

game for every  ∈ [0 1]. 
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(a) Both players spend all of their time in their relationship (i.e.	  =  = 1) 

until somebody deviates; the deviating player spends 1 and the other player 

spends 0 thereafter. (Find the range of .) 

Solution: Since (1 0) and (0 1) are Nash equilibria of the stage game, there 

is no incentive to deviate at any history with previous deviation by one player. 

Now consider any other history, in which they both are supposed to spend 1. 

If a player  follows the strategy, his he average payoff is 

ln 2 

Suppose he deviates and spends   1. Then, since the other player is 

supposed to spend 1, in the continuation game, player  spends 1 and the 

other player spends 0. This yields 0 for player . Hence, the average value of 

player  from deviation is 

(ln (1 + ) + 1  − ) (1  − )  

The best possible deviation is  = 0, yielding the payoff of 

1 −  

Hence, the strategy profile is a subgame-perfect Nash equilibrium iff 

ln 2 ≥ 1 −  

where the valeus on left and right hand sides of inequality are the average 

values from following the strategy profile and best deviation, respectively. 

One can  write this as a  lower bound  on  the discount factor:  

 ≥ 1 − ln 2 

(b) There are 4 states:  (namely, Engagement),  (namely, Marriage),  and 

. The game starts at state , in which each player spends ̂ ∈ (0 1). If  

both spends ̂, they switch to state  ; they  remain  in  state   otherwise. In 

state  , each spends 1. They remain in state  until one player  ∈ { }
spends less than 1 while the other player spends 1, in which case they switch 

to  state. In  state, player  spends ̃ and the  other player spends  1 − ̃ 
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forever. (Find the set of inequalities that must be satisfied by the parameters
 

, ̂, ̃, and  ̃.)
 

Hint: The following facts about logarithm may be useful:
 

 
ln () = 1; ln () ≤  − 1; ln () = ln + ln  

 

Solution: Since (̃ 1− ̃) is a Nash equilibrium of the stage game, there 

is no incentive to deviate at state  for any  ∈ { }. In state  , the  

average payoff from following the strategy profile is ln 2. If  a  player   deviates 

at state  , the  next  state  is   (as in part (a)), which gives the average payoff 

of 1 − ̃ to . Hence, as in part (a), the average payoff from best deviation 

is 1−  +  (1− ̃) = 1− ̃. Therefore, there is no incentive to deviate at 

state  iff ln 2 ≥ 1− ̃, i.e. 

̃ ≥ 1− ln 2 (12.6) 

On the other hand, in state , the average payoff from following the strategy 

is 

 = (1− ) (ln (2̂) + 1− ̂) +  ln 2 

= ln 2 + (1− ) (ln ̂ + 1− ̂)  

= ˆBy deviating and playing  6 , player   can get 

(1− ) (ln (̂ + ) + 1− ) +  

The best deviation is  = 1− ̂ and yields the maximum average payoff of 

(1− ) ̂ +  

There is no incentive to deviate at  iff 

 ≥ (1− ) ̂ +   

which simplifies to 

 ≥ ˆ

By substituting the value of , one can write this condition as 

ln 2 + (1− ) (ln ̂ + 1− ˆ ) ≥ ˆ (12.7) 

The strategy profile is a SPE iff (12.6) and (12.7) are satisfied. 
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Remark 12.1 One can make strategy profile above a subgame-perfect Nash 

equilibrium by varying all three parameters ̂, ̃1, ̃2, and  . For  a  fixed 

(̂ ̃1 ̃2), both conditions bound the discound factors from below, yielding ½ ¾ 
1 − ln 2 1 − ln 2 ̂ − ln 2 

 ≥ max   1 −  
̃1 ̃2 ln ̂ + 1  − ̂

(To see this, observe that ln ̂ + 1  − ̂   0.) Of course, when  is fixed, the 

above conditions can also be interpeted as bounds on ̃ and ̂. First,  the  

contribution of the guilty party  in the divorce state  cannot be too low: 

1 − ln 2 
̃ ≥  

 

For otherwise, the parties deviate and marriage cannot be sustained. Second, 

the above lower bound on  also gives an absolute upper bound on the effort 

level during the engagement. Since    1 and ln ̂ + 1  − ̂   0, the  condition  

on  implies that 

ˆ = 0693   ln 2 ∼

For otherwise, the lower bound on  would exceed 1. That is, one must start 

small, as engagement may never turn into marriage otherwise. Of course, 

one could also skip the engagement altogether. 

5. [Final, 2001] This question is about a milkman and a customer. At any day, with 

the given order, 

•	 Milkman puts  ∈ [0 1] liter of milk and 1 −  liter of water in a container 

and closes the container, incurring cost  for some    0; 

•	 Customer, without knowing , decides on whether or not to buy the liquid 

at some price . If she buys, her payoff is  −  and the milkman’s payoff 

is  − . If she does not buy, she gets 0, and the milkman gets −. If  she  

buys, then she learns . 

(a) Assume that this is repeated for 100 days, and each player tries to maximize 

the sum of his or her stage payoffs. Find all subgame-perfect equilibria of this 

game. 
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Solution: The stage game has a unique Nash equilibrium, in which  = 

0 and the customer does not buy. Therefore, the finitely repeated game 

has a unique subgame-perfect equilibrium, in which the stage equilibrium is 

repeated. 

(b) Now consider the infinitely repeated game with the above stage game and 

with discount factor  ∈ (0 1). What is the range of prices  for which 

there exists a subgame perfect equilibrium such that, everyday, the milkman 

chooses  = 1, and the customer buys on the path of equilibrium play? 

Solution: The milkman can guarantee himself 0 by always choosing  = 0. 

Hence, his continuation value at any history must be at least 0. Hence, in 

the worst equilibrium, if he deviates customer should not buy milk forever, 

giving the milkman exactly 0 as the continuation value. Hence, the SPE we 

are looking for is the milkman always chooses m=1 and the customer buys 

until anyone deviates, and the milkman chooses m=0 and the customer does 

not buy thereafter. If the milkman does not deviate, his average value is 

 =  −  

The best deviation for him (at any history on the path of equilibrium play) 

is to choose  = 0  (and not being able to sell thereafter). In that case, his 

average value is 

 =  (1 − ) +  0 =   (1 − )  

In order this to be an equilibrium, we must have  ≥ ; i.e., 

 −  ≥  (1 − )  

i.e., 

 ≥  

In order for the customer to buy on the equilibrium path, it must also be true 

that  ≤ . Therefore, 

 ≥  ≥  

6. [Midterm 2 Make up, 2006] Since the British officer had a thick pen when he drew 

the border, the border of Iraq and Kuwait is disputed. Unfortunately, the border 
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passes through an important oil field. In each year, simultaneously, each of these 

countries decide whether to extract high () or low  () amount of oil  from  this  

field. Extracting high amount of oil from the common field hurts the other country. 

In addition, Iraq has the option of attacking Kuwait ( ), which is costly for both 

countries. The stage game is as follows: 

  

 

 

 

2 2 4 1 

1 4 3 3 

−1 −1 −1 −2 

Consider the infinitely repeated game with this stage game and with discount 

factor  = 09. 

(a) Find a subgame perfect Nash equilibrium in which each country extracts low 

() amount of oil every year on the equilibrium path.9 

Solution: Consider the strategy profile 

Play ( ) until somebody deviates and play ( ) thereafter.
 

This strategy profile is a subgame-perfect Nash equilibrium whenever  ≥ 12.
 

(You should be able to verify this at this stage.)
 

(b) Find a subgame perfect Nash equilibrium in which Iraq extracts high () 

amount of oil and Kuwait extracts low () amount of oil every year on the 

equilibrium path. 

Solution: Consider the following ("Carrot and Stick") strategy profile10
 

There are two states: War and Peace. The game starts at state Peace. In
 

state Peace, they play ( ); they remain in Peace if ( ) is played and
 

switch to War otherwise. In state War, they play ( ); they  switch  to 
  

Peace if ( ) is played and remain in War otherwise.
 

This strategy profile is a subgame-perfect Nash equilibrium whenever  ≥ 35.
 

The vector of average values is (4 1) in state Peace and (−1 −1) (1 − ) +  

 (4 1) = (5 − 1 2 − 1) in War. Note that both countries strictly prefer 

9That is, an outside observer would observe that each country extracts low amount of oil every year. 
10See the next chapter for more on Carrot and Stick strategies. 
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Peace to War. In state Peace, Iraq clearly has no incentive to deviate. On 

the other hand, Kuwait gets 2 (1  − ) +   [2 − 1] from . Hence, it has no 

incentive to deviate if 

2 (1  − ) +   [2 − 1] ≤ 1 

i.e.,  ≥ 12, which is indeed the case. In state War, Kuwait clearly has no 

incentive to deviate. In that state, Iraq could possibly benefit from  deviating  

to , getting 2 (1  − ) +   (2 − 1). It does not have an incentive to deviate 

if 

2 − 1 ≥ 2 (1  − ) +   (2 − 1)  

i.e., 

2 − 1 ≥ 2
 

This is equivalent to  ≥ 35, which is clearly the case.
 

7. [Selected from Midterms 2 in years 2001 and 2002] Below, there are pairs of stage 

games and strategy profiles. For each pair, check whether the strategy profile is a 

subgame-perfect Nash equilibrium of the infinitely repeated game with the given 

stage game and discount factor  = 099. 

(a) Stage Game: 

  


 


 

6 6 0 4 

4 0 4 4 

Strategy profile: Each player plays  in the first round and in the following 

rounds he plays what the other player played in the previous round (i.e., at 

each   0, he plays what the other player played at − 1). 

Solution: This is a version of Tit—for—tat; it is not a subgame perfect Nash 

equilibrium. (Make sure that you can show this quickly! at this point.) 

(b) Stage Game: 

   

 

 

 

3 1 0 0 −1 2 
0 0 0 0 0 0 

−1 2 0 0 −1 2 
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Strategy profile: Until some player deviates, Player 1 plays  and Player
 

2 plays  . If anyone deviates, then each plays  thereafter.
 

Solution: This is a subgame perfect Nash equilibrium. After the deviation,
 

the players play a Nash equilibrium forever. Hence, we only need to check
 

that no player has any incentive to deviate on the path of equilibrium. Player
 

1 has clearly no incentive to deviate. If Player 2 deviates, he gets 2 in the
 

current period and gets zero thereafter. If he sticks to his equilibrium strategy,
 

then he gets 1 forever. The present value of this is 1 (1− )  2. Therefore, 
  

Player 2 doesn’t have any incentive to deviate, either.
 

(c) Stage Game: 

   

 

 

 

2 −1 0 0 −1 2 
0 0 0 0 0 0 

−1 2 0 0 2 −1 
Strategy profile: Until some player deviates, Player 1 plays  and Player 2 

alternates between  and . If anyone deviates, then each play  thereafter. 

Solution: It is subgame perfect. Since ( ) is a Nash equilibrium of 

the stage game, we only need to check if any player wants to deviate at a 

history in which Player 1 plays  and Player 2 alternates between  and  

throughout. In such a history, the average value of Player 1 is 

1 = 2−  = 101 

if Player 2 is to play  and 

1 = 2 − 1 = 098 

if  Player  2 is  to play  . In the case Player 2 is to play , Player  1  cannot  

gain by deviating. In the case Player 2 is to play , Player 1 can get at most 

gets 

2 (1− ) + 0 = 002 

by deviating to . Since  002  098, he has no incentive to deviate. The only 

possible profitable deviation for Player 2 is to play  when he is supposed to 

play . In that contingency, if he follows the strategy he gets 1 = 098; if  

he deviates, he gets only 2 (1− ) + 0 = 002. 
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(d) Stage Game: 

  

 2 2 1 3 

 3 1 0 0 

Strategy profile: The play depends on three states. In state 0, each  player  

plays ; in states 1 and 2, each player plays . The game start at state 

0. In  state  0, if each player plays  or if each player plays , they stay at 

0, but if a player  plays  while the other is playing , then  they  switch  

to state . At  any  , if player   plays , they switch to state 0; otherwise 

they stay at state . 

Solution: It  is  not subgame-perfect.  At state  2, Player  2 is to play , and  

the state in the next round is 0 no matter what Player 1 plays. In that case, 

Player 1 would gain by deviating and playing  (in state 2). 

12.5 Exercises 

1. How many strategies are there in twice-repeated prisoners dilemma game? 

2. Suppose that the stage game is a two-player games in which each player  has  

strategies. How many strategies each player has in an -times repeated game? 

3. Prove Theorem 12.1. 

4. Show that in any Nash equilibrium ∗ of the repeated game, the average payoff of 

player  is at least . 

5. [Homework 4, 2011] Consider the infinitely repeated game with discount factor 

 = 099 and the following stage game (in which the players are trading favors): 

Give Keep 

Give 1 1 −1 2 
Keep 2 −1 0 0 

(a) Find a subgame perfect equilibrium under which the average expected payoff 

of Player 1 is at least 133. Verify that your strategy profile is indeed a 

subgame-perfect Nash equilibrium. 



235 12.5. EXERCISES 

(b) Find a subgame-perfect equilibrium under which the average expected payoff 

of Player 1 is at least 149. Verify that your strategy profile is indeed a 

subgame-perfect Nash equilibrium. 

6. [Midterm 2, 2011] Consider the 100-times repeated game with the following stage 

game: 

where  is either 0 or 6. 

(a) Find the set of pure-strategy subgame-perfect equilibria of the stage game 

for each  ∈ {0 6}. 
(b) Take  = 6. What is the highest payoff Player 2 can get in a subgame-perfect 

equilibrium of the repeated game? 

(c) Take  = 0. Find a subgame-perfect equilibrium of the repeated game in 

which Player 2 gets more than 300 (i.e. more than 3 per day on average)? 

7. [Midterm 2, 2011] Consider an infinitely repeated game in which the stage game is 

as in the previous problem. Take the discount factor  = 099 and  = 6. For  each  

strategy profile below, check whether it is a subgame-perfect Nash equilibrium. 

(a) They play ( ) everyday until somebody deviates; they play () there-

after. 

(b) There are three states:	 , 1, and  2, where  the  play  is  ( ), (), and  

( ), respectively. The game starts at state . After state , it  switches  

to state 1 if the play is ( ) and to state 2 if the play is (); it  stays  

1 

I X 

a b 

L 

2 2 

2 
0 

1 

LR R 

1
6 

x0 
0x 

5
1 
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in state  otherwise. After states 1 and 2, it switches back to state  

regardless of the play. 

8. [Midterm 2 Make Up, 2011] Consider an infinitely repeated game in which the 

discount factor is  = 09 and the stage game is 

   

 

 

 

 

4 4 0 5 0 0 

5 0 3 3 −1 0 
2 2 1 1 −2 0 
0 0 0 −1 −3 −2 

For each payoff vector below ( ), find a subgame perfect equilibrium of the 

repeated game in which the average discounted payoff is ( ). Verify  that  the  

strategy profile you identified is indeed a subgame perfect equilibrium. 

(a)	 ( ) = (4 4). 

(b)	 ( ) = (2 2). 

9. [Midterm 2 Make Up, 2011] Consider the infinitely repeated game with the stage 

game in the previous problem and the discount factor  ∈ (0 1). For each of the 

strategy profiles below, find the conditions on the discount factor for which the 

strategy profile is a subgame-perfect equilibrium. 

(a) At  = 0, they  play  ( ). At  each  , they  play  ( ) if the play at  − 1 is 

( ) or if the play at  − 2 is not ( ). Otherwise, they play ( ). 

(b) There are 4 states:	 ( ), ( ), ( ), and  ( ). At each state (1 2), the  

play is (1 2). The game starts at state ( ). For  any   with (1 2), the  

state at  + 1 is 

( ) if the play at  is (1 2) 
0 
2

0 
2if the play at  is (1 

( ) if the play at  is (

) for some  6
( )
 = 2 

6= 1 
0 0 

1 2) for some 1

0 0 0if the play at  is ( ) for some  6= 1 and ( )
 0 1 2 1 2 6= 2 
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10. [Homework 4, 2011] Consider the -times repeated game with the following stage 

game. 
A X 

I 

(1,0,0) 

L R 

B 

L R 

C 

(0,2,2) (5,0,0) 

L R 

(5,0,0) (2,1,1) 

(a) For  = 2, what is the largest payoff A can get in a subgame-perfect Nash 

equilibrium in pure strategies? 

(b) For    2, find a subgame-perfect Nash equilibrium in which the payoff of A 

is at least 5 − 6. 

11. [Homework 4, 2011] Consider the infinitely repeated game with discount factor 

 ∈ (0 1) and the stage game in the previous problem. For each of the strategy 

profile below, find the range of  under which the strategy profile is a subgame-

perfect Nash equilibrium. 

(a) A always plays . B  and  C  both  play   until somebody deviates and play  

thereafter. 

(b) A plays I and B and C rotate between (), (), and  () until some-

body deviates; they play () thereafter.
 

(Note that the  outcome is  ( )  ()  ()  ( )  ( )    .)
 

12. [Homework 4, 2007] Seagulls love shellfish. In order to break the shell, they need 

to fly high up and  drop  the shellfish. The problem is the other seagulls on the 

beach are kleptoparasites, and they steal the shellfish if they can reach it first. This 

question tells the story of two seagulls, named Irene and Jonathan, who live in a 
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crowded beach where it is impossible to drop the shellfish and get it before some 

other gull steals it. The possible dates are  = 0 1 2 3   with no upper bound. 

Everyday, simultaneously Irene and Jonathan choose one of the two actions: "Up" 

or "Down". Up means to fly high up with the  shellfish  and drop it  next to the  

other sea gull’s nest, and Down means to stay down in the nest. Up costs    0, 

but if the other seagull is down, it eats the shellfish, getting payoff   . That  is,  

we consider the infinitely repeated game with the following stage game 

Up Down 

Up −− −  
Down − 0 0 

and discount factor  ∈ (0 1).11 For each strategy profile below, find the set of dis-

count factors  under which the strategy profile is a subgame-perfect equilibrium. 

(a) Irrespective of the history, Irene plays Up in the even dates and Down in the 

odd dates; Jonathan plays Up in the odd dates and Down in the even dates. 

(b) Irene plays Up in the even dates and Down in the odd dates while Jonathan 

plays the other way around until someone fails to go Up in a day that he is 

supposed to do so. They both stay Down thereafter. 

(c) For	  days Irene goes Up and Jonathan stays Down; in the next  days 

Jonathan goes Up and Irene stays Down. This continues back and forth until 

someone deviates. They both stay Down thereafter. 

(d) Irene goes Up on "Sundays", i.e., at  = 0 7 14 21   , and stays Down on 

the other days, while Jonathan goes up everyday except for Sundays, when 

he rests Down, until someone deviates; they both stay Down thereafter. 

(e) At  = 0, Irene goes Up and Jonathan stays Down, and then they alternate. 

If a seagull  fails to go Up at a history when  is supposed to go Up, then 

the next day  goes Up and the other seagull stays Down, and they keep 

alternating thereafter until someone fails to go Up when it is supposed to do 

so. (For example, given the history, if Irene is supposed to go Up at  but 

11Evolutionarily speaking, the discounted sum is the fitness of the genes, which determine the behav-

ior. 
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stays Down, then Irene goes Up at  + 1,  Jonathan goes Up at   + 2, and  so  

on. If Irene stays down again at  +1, then she is supposed to go up at  +2, 

and Jonathan is supposed to go at  + 3, etc.)  

13. [Homework 4, 2007] Consider the infinitely repeated game, between Alice and Bob, 

with the following stage game: 

Alice 

Hire Fire 

Bob 

Work Shirk 
0 
0 

-12 
32 

The discount factor is  = 09. (Fire does not mean that the game ends.) For each 

strategy profile below, check if it is a subgame-perfect equilibrium. If it is not a 

SPE for  = 09, find the set of discount factors  under which it is a SPE. 

(a) Alice Hires if and only if there is no Shirk in the history.	 Bob Works if and 

only if there is no Shirk in the history. 

(b) Alice Hires unless Bob (was hired and) Shirked in the previous period, in 

which case she Fires. Bob always Works. 

(c) There are three states: Employment, Punishment for Alice, and Punishment 

for Bob. In the Employment state, Alice Hires and Bob Works. In the 

Punishment state for Alice, Alice Hires but Bob Shirks. In the Punishment 

state for Bob, Alice Fires, and Bob would have worked if Alice Hired him. The 

game starts in Employment state. At any state, if only one player fails to play 

what s/he is supposed to play at that state, then we go to the Punishment 

state for that player in the next period; otherwise we go to the Employment 

state in the next period. 
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14. [Midterm 2, 2007] Consider the infinitely repeated game with the following stage 

game 

Chicken
 

Lion
 

Chicken Lion 

3 3 1 4 

4 1 0 0 

and discount factor  = 099. For each strategy profile below check if it is a 

subgame-perfect equilibrium. (You need to state your arguments clearly; you will 

not get any points for Yes or No answers.) 

(a) There are two states: Cooperation and Fight. The game starts in the Cooper-

ation state. In Cooperation state, each player plays Chicken. If both players 

play Chicken, then they remain in the Cooperation state; otherwise they go 

to the Fight state in the next period. In the Fight state, both play Lion, and 

they go back to the Cooperation state in the following period (regardless of 

the actions). 

(b) There are three states: Cooperation, P1 and P2. The game starts in the Co-

operation state. In the Cooperation state, each player plays Chicken. If they 

play (Chicken, Chicken) or (Lion, Lion),  then they  remain in the  Cooperation  

state in the next period. If player  plays Lion while the other player plays 

Chicken, then in the next period they go to P state. In P state player  plays 

Chicken while the other player plays Lion; they then go back to Cooperation 

state (regardless of the actions). 

15.	 [Midterm 2 Make Up, 2007] Alice has two sons, Bob and Colin. Every day, she is to 

choose between letting them play with the toys ("Play") or make them visit their 

grandmother ("Visit"). If she make them visit their grandmother, each of them 

gets 1. If she lets them play, then Bob and Colin simultaneously choose between 

Grab and Share, which leads to the payoffs as in the following table, where the 

third entry is the payoff of Alice: 

Bob\Colin Grab Share 

Grab −1 −1 −1 3 −2 −2 
Share −2 3 −2 2 2 2 
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Consider the infinitely repeated game with the above game is the stage game and 

the discount factor is   = 09. For each strategy profile below check if it is a 

subgame-perfect equilibrium. Show your work. 

(a) There are three states: Share,  and  . In Share state Alice lets 

them play and Bob and Colin both share. In  state (resp.  

state), Alice lets them play, and Bob (resp. Colin) shares while the other 

brother grabs. The game starts in Share state. If Bob (resp. Colin) does 

not play what he is supposed to play while the other player plays what he is 

supposed to play, then the next day we go to  (resp. ) state;  we  

go to Share state next day otherwise. 

(b) There are two states: Play and Visit. The game starts in the Play state. In 

the Play state, Alice lets them play, and both sons share. In Play state, if 

everybody does what they are supposed to do, we remain in Play state; we 

go to Visit state next day otherwise. In the Visit state, Alice makes them 

visit their grandmother, and they would both Grab if she let them play. In 

the Visit state, they automatically go back to Play state next day. 

16. [Homework 4, 2006] Alice has a restaurant, and Bob is a potential customer.	 Each 

day Alice is to decide whether to use high quality supply (High) or low quality 

supply (Low) to make the food, and Bob is to decide whether to buy or not at 

price  ∈ [1 3].  (At  the time Bob  buys  the food,  he cannot tell if it is of high  

quality, but after buying he knows whether it was high or low quality.) The payoffs 

for a given day is as follows. 

Alice\Bob Buy Skip 

High  − 1 3 −  −1 0 
Low  − 0 0 

The discount rate is   = 099. For each of the following strategy profiles, find the 

range of  ∈ [1 3] for which the strategy profile is a subgame-perfect equilibrium 

(a) There are two states: Trade and No-trade. The game starts at Trade state. 

In Trade state, Alice uses High quality supply, and Bob Buys. If in the Trade 

state Alice uses Low quality supply, then they go to the No-Trade state, in 
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which for  days Alice uses Low quality supply and Bob Skips. At the end of 

 day, independent of what happens, they go back to the Trade state. 

(b) Alice is to use High quality supply in the even days,  = 0 2 4   , and  Low  

quality supply in the odd days,  = 1 3 5   ; Bob  is  to  Buy  everyday.  If  

anyone deviates from this program, then in the rest of the game Alice uses 

Low quality and Bob Skips.12 

17. [Homework 4, 2006] In question 1, take	  = 2, and check whether each of the 

following is a subgame-perfect equilibrium. [We assume here that Bob somehow 

can check whether the food was good in the previous day even if did not buy it.] 

(a) Everyday Alice uses High quality supply.	 Bob buys the product in the first 

day. Afterwards, Bob buys the product if and only if Alice has used High 

quality supply in the previous day. 

(b) There are two states: Trade and Punishment. The game starts at Trade state. 

In Trade state, Alice uses High quality supply, and Bob Buys. In Trade state 

if Alice uses Low quality, then we go to Punishment state. In Punishment 

state, Alice uses High quality supply, and Bob Skips. In Punishment state, if 

Alice uses Low quality supply or Bob Buys, then we remain in the Punishment 

state; otherwise we go to Trade state. 

18. [Homework 4, 2006] In an eating club, there are    2 members. Each day, each 

member  is to decide how much to eat, denoted by , and  the  payoff of  for that 

day is 
√ 1 + · · ·+ 
 −  

 

For  = 099, check if either of the following strategy profiles is a subgame-perfect 

equilibrium. [If you solve the problem for  = 3, you will get 80%.] 

(a) Each player eats  = 14 units until somebody eats more than 14; thereafter  

each eats  = 24 units. 

12That is, at any 0, Alice will use Low quality supply and Bob wil Skip in either of the following 

cases: (i) Alice used Low quality supply at an even date   0, or (ii) she used High quality supply at 
0an odd date   0, or (iii) Bob Skipped at some date    . 

http:Skips.12
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(b) Each player eats  = 14 units until somebody eats more than 14; thereafter  

each eats  = 2 units. 

19. [Homework 4, 2006] Each day Alice and Bob receive 1 dollar. Alice makes an offer  

to Bob, and Bob accepts or rejects the offer, where  ∈ {001 002     098 099}. 
If Bob accepts the offer Alice gets 1− and Bob gets . If  Bob  rejects  the  offer, then 

they both get 0. Find the values of  for which the following is a subgame-prefect 

equilibrium, where ̄ ∈ {001 002     098 099} is fixed. 
At  = 0, Alice  offers ̄ and Bob accepts Alice’s offer, , if  and  only  if   ≥ ̄. They  

keep doing this until Bob deviates from this program (i.e. until Bob accepts an 

offer   ̄, or  Bob  rejects  an  offer  ≥ ̄). Thereafter, Alice offers  = 001 and 

Bob accepts any offer. 

20. [Homework 3, 2004] Consider a Firm and a Worker. The firm first decides whether 

to pay a wage    0 to the worker (hire him), and then the worker is to decide 

whether work, which costs him   0 and produces  to the firm where     . 

The payoffs are as follows: 

Firm Worker 

pay, work  −   −  

pay, shirk −  

don’t pay, work  − 
don’t pay, shirk 0 0 

(a) Find all Nash equilibria. 

(b)  Now  consider  the game this stage  game  is  repeated  infinitely many times and 

the players discounts the future with . The following are strategy profiles 

for this repeated game. For each of them, Check if it is a subgame-perfect 

Nash equilibrium for large values of , and  if  so,  find the lowest discount rate 

that makes the strategy profile a subgame-perfect equilibrium. 

i. No matter what happens, the firm always pays and the worker works. 

ii. At any time , the worker works if he is paid at , and  the  firm always 

pays. 
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iii. At  = 0, the  firm pays and the worker works. At any time    0, the  

firm pays if and only if the worker worked at all previous dates, and the 

worker works if and only if he has worked at all previous dates. 

iv.	 At  = 0, the  firm pays and the worker works. At any time    0, the  

firm pays if and only if the worker worked at all previous dates at which 

the firm paid, and the worker works if and only if he is paid at  and he 

has worked at all previous dates at which he was paid. 

v.	 There are two states: Employment, and Unemployment. The game starts 

at Employment. In this state, the firm pays, and the worker works if and 

only if he has been paid at this date. If the worker shirks we go to Un-

employment state; otherwise we stay in Employment. In Unemployment 

the firm does not pay and the worker shirks. After    0 days of Unem-

ployment we always go back to Employment. (Your answer should cover 

each    0.) 

21.	 Stage Game: Alice and Bob simultaneously choose contributions  ∈ [0 1] and 

 ∈ [0 1], respectively, and get payoffs  = 2−  and  = 2− , respectively. 

(a) (5 points) Find the set of rationalizable strategies in the Stage Game above. 

(b) (10 points) Consider the infinitely repeated game with the Stage Game above 

and with discount factor  ∈ (0 1). For  each  , find the maximum (∗ ∗) 

such that there exists a subgame-perfect equilibrium of the repeated game 

in which Alice and Bob contribute ∗ and ∗, respectively, on the path of 

equilibrium. 

(c) (10 points) In part (b), now assume that at the beginning of each period 

 one of the  players (Alice at periods   = 0 2 4     and Bob at periods 

 = 1 3 5   ) offers a stream of contributions  = ( +1   ) and  = 

( +1   ) for Alice and Bob, respectively, and the other player accepts or 

rejects. If the offer is accepted then the game ends leading the automatic 

contributions  = ( +1   ) and  = ( +1   ) from period  on. If the 

offer is rejected, they play the Stage Game and proceed to the next period. ³	 ´ 
Find ( ), ( ), and  ˆ such that the following is a subgame-perfect ˆ	  

equilibrium: 
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∗ :	 When it is Alice’s turn, Alice offers (    ) and (    ) and Bob 

accepts an offer () if and only if (1− ) [2 −  +  (2+1 − +1) + · · · ] ≥ 

2 −  When it is Bob’s turn, Bob offers (    ) and (    ) 

and Alice accepts an offer () if and only if (1− ) [2 −  +  (2+1 − +1) + · · · ] ≥³	 ´ 
2 −  If  there is no agreement,  in  the  stage game they play  ˆ ˆ	 . 

Verify that ∗ is a subgame perfect equilibrium for the values that you found. 

(If you find it easier, you can consider only the constant streams of contribu-

tions  = (    ) and  = (    ).) 

22. [Selected from Midterms 2 and make up exams in years 2002 and 2004] Below, 

there are pairs of stage games and strategy profiles. For each pair, check whether 

the strategy profile is a subgame-perfect equilibrium of the game in which the 

stage game is repeated infinitely many times. Each agent tries to maximize the 

discounted sum of his expected payoffs in the stage game, and the discount rate is 

 = 099. (Clearly explain your reasoning in each case.) 

(a)	 Stage Game: There are   2 players. Each player, simultaneously, decides
 

whether to contribute $1 to a public good production project. The amount
 

of public good produced is  = (1 + · · ·+ ) 2, where   ∈ {0 1} is the
 
level of contribution for player . The payoff of a player  is  − .
 

Strategy profile: Each player contributes, choosing  = 1, if and only if 

the amount of public good produced at each previous date is greater than 

4; otherwise each chooses  = 0.  (According to this  strategy profile, each 

player contributes in the first period.) 

(b)	 Stage Game: 

  


 


 

6 6 0 4 

4 0 4 4 

Strategy profile: Each player plays  until someone deviates. If a player 

deviates, then he is to  keep playing   and the  other player plays   forever. 
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(c)	 Stage Game: 

  

 6 6 0 4 

 4 0 4 4 

Strategy profile: Each player plays  until someone deviates. If a player 

deviates, then each player plays  forever. 

(d)	 Stage Game: Player 1 decides whether to give a $100 to Player 2. If Player 

1 gives $100, then Player 2 decides whether to provide a service to Player 1, 

which is worth $200 for Player 1 and costs $50 to Player 2. 

Strategy Profile: There are two states: Trade and No trade. The game 

starts in Trade state. If Player 1 pays 100, and Player 2 does not provide 

the service, then they go to No trade state and stay there for two periods. 

In No trade period, Player 1 does not give any money, and Player 2 does not 

provide service (if Player 1 pays him $100). 

23. [Midterm 2 Make Up, 2001] Consider the infinitely repeated game with the Pris-

oners’ Dilemma game 
  

 4 4 0 5 

 5 0 1 1 

as its stage game. Each agent tries to maximize the discounted sum of his expected 

payoffs in the stage game with discount rate . 

(a) What is the lowest discount rate  such that there exists a subgame perfect 

equilibrium in which each player plays C on the path of equilibrium play? 

[Hint: Note that a player can always guarantee himself an average payoff of 

1 by playing D forever.] 

(b) For sufficiently large values of , construct a subgame-perfect equilibrium in 

which any agent’s action at any date  only depends on the play at dates −1 
and  − 2, and in which each player plays  on the path of equilibrium play. 
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