
Chapter 9 

Backward Induction 

We now start analyzing the dynamic games with complete information. These notes 

focus on the perfect-information games, where each information set is singleton, and 

apply the notion of backward induction to these games. We will assume that the game 

has "finite horizon", i.e., there can only be finitely many moves in any history of moves. 

9.1 Definition 

The concept of backward induction corresponds to the assumption that it is common 

knowledge that each player will act rationally at each future node where he moves — even 

if his rationality would imply that such a node will not be reached.1 (The assumption 

that the player moves rationally at each information set he moves is called sequential 

rationality.) 

Mechanically, backward induction corresponds to the following procedure, depicted in 

Figure 9.1. Consider any node that comes just before terminal nodes, that is, after each 

move stemming from this node, the game ends. (Such nodes are called pen-terminal.) If 

the player who moves at this node acts rationally, he chooses the best move for himself 

at that node. Hence, select one of the moves that give this player the highest payoff. 

Assigning the payoff vector associated with this move to the node at hand, delete all the 

1More precisely: at each node  the player is certain that all the players will act rationally at all 

nodes  that follow node ; and at each node  the player is certain that at each node  that follows 

node  the player who moves at  will be certain that all the players will act rationally at all nodes  

that follow node ,...ad infinitum. 
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Take any pen-terminal node 

Pick one of the payoff vectors (moves) that gives 
‘the mover’ at the node the highest payoff 

Assign this payoff to the node at the hand; 

Eliminate all the moves and the 
terminal nodes following the node 

Any non-terminal 
node 

Yes 

No 

The picked moves 

Figure 9.1: Algorithm for backward induction 

moves stemming  from  this node so  that we have a  shorter game,  where the  above node  

is a terminal node. Repeat this procedure until the origin is the only remaining node. 

The outcome  is  the moves  that  are picked  in the  way.  Since a move  is  picked  at  each  

information set, the result is a strategy profile. 

For an illustration of the procedure, consider the game in the following figure. This 

game describes a situation where it is mutually beneficial for all players to stay in a 

relationship, while a player would like to exit the relationship, if she knows that the 

other player will exit in the next day. 

1 
• 

 2 
• 

 1 
• 

 
(2,5) 

   

(1,1) (0,4) (3,3) 
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In the third day, Player 1 moves, choosing between going across () or down  (). If 

he goes across, he would get 2; if he goes down, he would get the higher payoff of 3. 

Hence, according to the procedure, he goes down. Selecting the move  for the node at 

hand, one reduces the game as follows: 

1  2  
•• (3,3)
 

  

(1,1) (0,4) 

Here, the part of the game that starts at the last decision node is replaced with the 

payoff vector associated with the selected move, , of the player at this decision node. 

In the second day, Player 2 moves, choosing between going across () or down  (). 

If she goes across, she get 3; if she goes down, she gets the higher payoff of 4. Hence, 

according to the procedure, she goes down. Selecting the move  for the node at hand, 

one reduces  the game further  as  follows:  

1  
•
 (0,4)
 

 

(1,1) 

Once again, the part of the game that starts with the node at hand is replaced with 

the payoff vector associated with the selected move, . Now,  Player  1  gets  0  if  he  goes  

across (), and gets 1 if he goes down (). Therefore, he goes down. The procedure 

results in the following strategy profile: 

That is, at each node, the player who is to move goes down, exiting the relationship. 

Let’s go over the assumptions that we have made in constructing this strategy profile. 
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••• 
1  2  1  

(2,5) 

   

(1,1) (0,4) (3,3) 

We assumed that Player 1 will act rationally at the last date, when we reckoned that he 

goes down. When we reckoned that Player 2 goes down in the second day, we assumed 

that Player 2 assumes that Player 1 will act rationally on the third day, and also assumed 

that she is rational, too. On the first day, Player 1 anticipates all these. That is, he is 

assumed to know that Player 2 is rational, and that she will keep believing that Player 

1 will act rationally on the third day. 

This example also illustrates another notion associated with backward induction — 

commitment (or the lack of commitment). Note that the outcomes on the third day 

(i.e., (3,3) and (2,5)) are both strictly better than the equilibrium outcome (1,0). But 

they cannot reach these outcomes, because Player 2 cannot commit to go across, and 

anticipating that Player 2 will go down, Player 1 exits the relationship in the first day. 

There is also a further commitment problem in this example. If Player 1 where able 

to commit to go across on the third day, then Player 2 would definitely go across on 

the second day. In that case, Player 1 would go across on the first. Of course, Player 1 

cannot commit to go across on the third day, and the game ends in the first day, yielding 

the low payoffs (1,0).  

9.2 Backward Induction and Nash Equilibrium 

Careful readers must have noticed that the strategy profile resulting from the backward 

induction above is a Nash equilibrium. (If you have not noticed that, check that it is 

indeed a Nash equilibrium). This not a coincidence: 

Proposition 9.1 In a game with finitely many nodes, backward induction always results 
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in a Nash equilibrium. 

Proof. Let ∗ = (∗ 1     
∗ 
) be the outcome of Backward Induction. Consider any 

player  and any strategy . To show that ∗ is a Nash equilibrium, we need to show 

that ¡ ¢ 
 ( 

∗ ) ≥     ∗−  ¡	 ¢ 
where −

∗ 
 =  

∗ 
6 . Take  any  node  
=

•	 at which player  moves, and 

•	 ∗  and  prescribe the same moves for player  at every node that comes after this 

node. 

(There  is  always  such  a node;  for example  the last node player   moves.) Consider 

a new  strategy  1 
 according to which  plays everywhere according to  except for the ¡ ¢ ¡ ¢ 

  ∗above node, where he plays according to ∗.According to 1 ∗ or   , after this 	  − − ¡ ¢ 
node, the play is as in ∗   

∗
− , the outcome of the backward induction. Moreover, 

in the construction of ∗, we have had selected the best move for player  given this 

continuation play. Therefore, the change from  to  
1 , which follows the backward 

induction recommendation, can only increase the payoff of : ¡ ¢ ¡ ¢ 
1 ∗ ∗     ≥      − − 

Applying  the same procedure to  1 
 , now construct a new strategy 2 

 that differs from 

1 ∗ 
	 only at one node, where player  plays according to  , and  ¡ ¢ ¡ ¢ 

2 ∗ ∗ 1    − ≥    − 

= 1 = 2 = · · · =  = · · · .Repeat this procedure, producing a sequence of strategies  6  6  6 6  6
Since the game has finitely many nodes, and we are always changing the moves to those 

of  
∗ 

  
∗ . By construction, we have , there  is  some   such that  = ¡ ¢ ¡ ¢ ¡ ¢ ¡ ¢ 

 ∗ ∗	 ∗ ∗ −1	 1 ( ∗ ) =     ≥      ≥ · · · ≥      ≥   −  − −	 − 

completing the proof. 

It is tempting to conclude that backward induction results in Nash equilibrium be-

cause one plays a best response at every node, finding the above proof unnessarily long. 
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Since one takes his future moves given and picks only a move for the node at hand, 

chhosing the best moves at the given nodes does not necessarily lead to a best response 

among all contingent plans in general. 

Example 9.1 Consider a single player, who chooses between good and bad everyday 

forever. If he chooses good at everyday, he gets 1, and he gets 0 otherwise. Clearly, the 

optimal plan is to play good everyday, yielding 1. Now consider the strategy according to 

which he plays bad everyday at all nodes. This gives him 0. But the strategy satisfies the 

condition of backward induction (although bacward induction cannot be applied to this 

game with no end node). At any node, according to the moves selected in the future, he 

gets zero regardless of what he does at the current node. 

The above pathological case is a counterexample to the idea that if one is playing a 

best move at every node, his plan is a best response. The latter idea is a major principle 

of dynamic optimization, called the Single-Deviation Principle. It applies in most cases 

except for the pathological cases as above. The above proof shows that the principle 

applies in games with finitely many moves. Single-Deviation Principle will be the main 

tool in the analyses of the infinite-horizon games in upcoming chapters. Studying the 

above proof is recommended. 

But not all Nash equilibria can be obtained by backward induction. Consider the 

following  game  of  the Battle of the  Sexes with perfect  information,  where Alice  moves  

first. 

Bob

Alice

Bob

O F

O OF F

(2,1) (0,0) (0,0) (1,2)

Bob

Alice

Bob

O F

O OF F

(2,1) (0,0) (0,0) (1,2)

Bob 

Alice 

Bob 

O F 

O OF F 

(2,1) (0,0) (0,0) (1,2) 

In this game, backward induction leads to the strategy profile identified in the figure, 

according to which Bob goes wherever Alice goes, and Alice goes to Opera. There is 

another Nash equilibrium: Alice goes to Football game, and Bob goes to Football game 
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at both of his decision nodes. Let’s see why this is a Nash equilibrium. Alice plays a 

best response to the strategy of Bob: if she goes to Football she gets 1, and if she goes 

to Opera she gets 0 (as they do not meet). Bob’s strategy (FF) is also a best response 

to Alice’s strategy: under this strategy he gets 2, which is the highest he can get in this 

game. 

One can, however, discredit the latter Nash equilibrium because it relies on an se-

quentially  irrational  move  at  the node after  Alice goes to Opera.  This node does not  

happen according to Alice’s strategy, and it is therefore ignored in Nash equilibrium. 

Nevertheless, if Alice goes to Opera, going to football game would be irrational for Bob, 

and he would rationally go to Opera as well. And Alice should foresee this and go to 

Opera. Sometimes, we say that this equilibrium is based on "an incredible threat", with 

the obvious interpretation. 

This example illustrates a shortcoming of the usual rationality condition, which re-

quires that one must play a best response (as a complete contingent plan) at the be-

ginning of the game. While this requires that the player plays a best response at the 

nodes that he assigns positive probability, it leaves the player free to choose any move 

at the nodes that he puts zero probability–because all the payoffs after  those nodes  are  

multiplied by zero in the expected utility calculation. Since the likelihoods of the nodes 

are determined as part of the solution, this may lead to somewhat erroneous solutions in 

which a node is not reached because a player plays irrationally at the node, anticipating 

that the node will not be reached, as in (Football, FF) equilibrium. Of course, this is 

erroneous in that when that node is reached the player cannot pretend that the node 

will not be reached as he will know that the is reached by the definition of information 

set. Then, he must play a best response taking it given that the node is reached. 

9.3 Commitment 

In this game, Alice can commit to going to a place, but Bob cannot. If we trust the 

outcome of backward induction, this commitment helps Alice and hurts Bob. (Although 

the game is symmetric Alice gets a higher payoff.) It is tempting to conclude that ability 

to commit is always good. While this is true in many games, in some games it is not the 

case. For example, consider the Matching Pennies with Perfect Information, depicted 
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1 

Head 

Tail 

(-1,1) 

(-1,1) 

in Figure 3.4. Let us apply backward induction. If Player 1 chooses Head, Player 2 will 

play Head; and if Player 1 chooses Tail, Player 2 will prefer Tail, too. Hence, the game 

is reduced to 

In that case, Player 1 will be indifferent between Head and Tail, choosing any of these 

two option or any randomization between these two acts will give us an equilibrium with 

backward induction. In either equilibrium, Player 2 beats Player 1. 

9.4 Multiple Solutions 

This example shows that backward induction can lead to multiple equilibria. Here, in 

one equilibrium, Player 1 chooses Head, in another one Player 1 chooses Tail, and yet in 

another mixed strategy equilibrium, he mixes between the two strategies. Each mixture 

probability corresponds to a different equilibrium. In all of these equilibria, the payoffs 

are the same. In general, however, backwards induction can lead to multiple equilibria 

with quite different outcomes. 

Example–Multiple Solutions Consider the game in Figure 9.2. According to back-

ward induction, in his nodes on the right and at the bottom, Player 1 goes down, choosing 

 and , respectively. This leads to the reduced game in Figure 9.3. Clearly, in the re-

duced game, both  and  yield 2 for Player 2, while  only yields 1. Hence, she must 

choose either  or  or any randomization between the two. In other words, for any 

 ∈ [0 1], the mixed strategy that puts  on , 1 −  on  and 0 on  can be selected by 

the backward induction. Select such a strategy. Then, the payoff vector associated with 



139 9.4. MULTIPLE SOLUTIONS 

21 A x 1 a 
(1,1) 

y
 

D d
 
z (0,2)
 

(1,1) a (2,2)
 
1 (0,1)
 

d
 

(1,0) 

Figure 9.2: A game with multiple backward induction solutions. 

21 A x 

(1,1) (1,0) 

Figure 9.3: 

(0,2) 

(2,2) 

D 

y 

z 
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the decision of Player 2 is (2 2). The game reduces to 

1 A 

D 

(2p,2) 

(1,1) 

The strategy selected for Player 1 depends on the choice of . If  some     12 is selected 

for Player 2, Player 1 must choose . This results in the equilibrium in which Player 

1 plays   and Player 2 plays  with probability  and  with probability 1 − . If  

   12, Player 1 must choose . In the resulting equilibrium, Player 1 plays  and 

Player 2 plays  with probability  and  with probability 1− . Finally, if  = 12 is 

selected, then Player 1 is indifferent, and we can select any randomization between  

and , each resulting  in  a different equilibrium. 

9.5 Example–Stackelberg duopoly 

In the Cournot duopoly, we assume that the firms set the prices simultaneously. This 

reflects the assumption that no firm can commit to a quantity level. Sometime a firm 

may be able to commit to a quantity level. For example, a firm may be already in the 

market and constructed its factory and warehouses etc, and its production level is fixed. 

The other firm enters the market later knowing the production level of the first firm. 

We will consider such a situation, which is called Stackelberg duopoly. There are two 

firms. The first firm is called the Leader, and the second firm is called the Follower. As  

before we take the marginal cost  constant. 

• The Leader first chooses its production level 1. 

• Then, knowing 1, the Follower chooses its own production level 2. 

•	 Each firm  sells its quantity  at the realized market price
 

 (1 + 2) = max {1− (1 + 2)  0} 
 
yielding the payoff of 

 (1 2) =  ( (1 + 2)− )  

http:Follower.As
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Notice that this defines an extensive form game: 

•	 At the initial node, firm 1 chooses an action 1; the set of allowable actions is 

[0∞). 

•	 After each action of  firm 1, firm 2 moves and chooses action 2; the set of allowable 

actions now is again [0∞). 

•	 Each of these action leads to a terminal node, at which the payoff vector is 

(1 (1 2)  2 (1 2)). 

Notice that a strategy of firm 1 is a real number 1 from [0∞), and more importantly 

a strategy of  firm 2 is a function from [0∞) to [0∞), which assigns a production level 

2 (1) to each 1. These strategies with the utility function  (1 2) =   (1 2 (1)) 

gives us the  normal  form.  

Let us apply bachwards induction. Given 1 ≤ 1 − , the best production level for 

the Follower is 
1 − 1 −  

2 
∗ (1) =   

2 
yielding to the payoff vector2 Ã ! Ã	 ! 

1 (1 2 
∗ (1)) 2

1 1 (1 − 1 − ) 
= 

2  (9.1) 
2 (1 2 

∗ (1)) 4
1 (1 − 1 − )

By replacing the moves of firm 2 with the associated payoffs we obtain a game  in  which  

firm one chooses a quantity level 1 which leads to the payoff vector in (9.1). In this 

game firm 1 maximizes 1
2 1 (1 − 1 − ), choosing  

1 
∗ = (1  − ) 2, 

the quantity that it would choose if it were alone. 

You should also check that there is also a Nash equilibrium of this game in which the 

follower produces the Cournot quantity irrespective of what the leader produces, and 

the leader produces the Cournot quantity. Of course, this is not consistent with back-

ward induction: when the follower knows that the leader has produced the Stackelberg 

quantity, he will change his mind and produce a lower quantity, the quantity that is 

computed during the backward induction. ¡	 ¢
2Note that 1 1 − 1 − 1−1− −  = 1 1 (1 − 1 − ) 

2 2 
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9.6 Exercises with Solutions 

1. [Midterm 1, 2001] Using Backward Induction, compute an equilibrium of the game 

in Figure 3.9.
 

Solution: See Figure 9.4.
 

(2,1)

(1,2)

1

1
1

2

X E

L R

M

l r  

(2,1) 

(1,2) 

1 

1
1 

2 

X E 

L R 

M 

l r   

(3(3,1),1) ((1,31,3)) (1,3(1,3 (3)) (3,1),1) 

Figure 9.4: 

2. Consider the game in Figure 9.5. 

2

1

2

1

L R

l1 r1 l2 r2

l r
1,2 2,1 0,3

2,2 1,4

2 

1 

2 

1 

L R 

l1 
r1 l2 

r2 

l r 
1,2 2,1 0,3 

2,2 1,4 

Figure 9.5: 

(a) Apply backward induction in this game. State the rationality/knowledge 

assumptions necessary for each step in this process. 
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11
 

2
2

1

L R

l1 r1 l2 r2

l r
1,2 2,1 0,3

2 
2 

1 

L R 

l1 
r1 l2 

r2 

l r 
1,2 2,1 0,3 

2,22,2 1,41,4 

Figure 9.6: 

Solution: The backward induction outcome is as below. First eliminate 

action 1 for Player 2, by assuming that Player 2 is sequentially rational and 

hence will not play 1, which is conditionally dominated by 1. Also  eliminate  

action  for Player 1, assuming that Player 1 is sequentially rational. This  is  

because  is conditionally dominated by . Second, eliminate 2, assuming that 

Player 2 is sequentially rational and that Player 2 knows that Player 1 will be 

sequentially rational at future nodes. This is because, believing that Player 1 

will be sequentially rational in the future, Player 2 would believe that Player 

1 will  not  play  , and hence 2 would lead to payoff of 2. Being sequentially 

rational she must play 2. Finally, eliminate , assuming that (i) player 1 is 

sequentially rational, (ii) player 1 knows that player 2 is sequentially rational, 

and (iii) player 1 knows that player 2 knows that player 1 will be sequentially 

rational in the future. This is because (ii) and (iii) lead Player 1 to conclude 

that Player 2 will play 1 and 2, and thus by (i) he plays . The solution is 

as in Figure 9.6. 

(b) Write this game in normal-form. 
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Solution: Each player has 4 strategies (named by the actions to be chosen). 

12 12 12 12 

 

 

 

 

1 2 1 2 2 1 2 1 

1 2 1 2 2 1 2 1 

0 3 2 2 0 3 2 2 

0 3 1 4 0 3 1 4 

(c) Find all the rationalizable strategies in this game	 –use the normal form. 

State the rationality/knowledge assumptions necessary for each elimination. 

Solution: First,  is strictly dominated by the mixed strategy that puts 

probability .5 on each of  and . Assuming  that  Player 1 is rational, we  

conclude that he would not play . We eliminate , so the game is reduced 

to 
12 12 12 12 

 

 

 

1 2 1 2 2 1 2 1 

1 2 1 2 2 1 2 1 

0 3 2 2 0 3 2 2 

Now 12 is strictly dominated by 12. Hence, assuming that (i) Player 2 is 

rational, and that (ii) Player 2 knows that player 1 is rational, we  eliminate  

12. This is because, by (ii), Player 2 knows that Player 1 will not play , 

and hence by (i) she would not play 12. The game is reduced to 

12 12 12 


 


 


 

1 2 1 2 2 1 

1 2 1 2 2 1 

0 3 2 2 0 3 

There is no strictly dominated strategy in the remaining game. Therefore, 

the all the remaining strategies are rationalizable. 

(d) Comparing your answers to parts (a) and (c), briefly discuss  whether or how  

the rationality assumptions for backward induction and rationalizability dif-

fer. 
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Solution: Backward induction gives us a much sharper prediction compared 

to that of rationalizability. This is because the notion of sequential rationality 

is much stronger than rationality itself. 

(e) Find all the Nash equilibria in this game. 

Solution: The only Nash equilibria are the strategy profiles in which player 

1 mixes between the strategies L and Lr, and 2 mixes between 12 and 12, 

playing 12 with higher probability: 

  = {(1 2) |1 () + 1 () = 1 2 (12) + 2 (12) = 1 2 (12) ≤ 12}  

(If you found the pure strategy equilibria (namely, (L,12) and  (Lr,12)), you 

will get most of the points.) 

3. [Midterm 1, 2011] A committee of three members, namely  = 1 2 3, is to decide 

on a new bill that would make file sharing more difficult. The value of the bill 

to member  is  where 3  2  1  0. The music industry, represented by 

a lobbyist named Alice, stands to gain  from the passage of the bill, and the 

file-sharing industry, represented by a lobbyist named Bob, stands to lose  from 

the passage of the bill where     0. Consider the following game. 

•	 First, Alice promises non-negative contributions 1, 2, and  3 to the members 

1 2 and 3, respectively, where  is to be paid to member  by Alice if the 

bill passes. 

•	 Then, observing (1 2 3), Bob promises non-negative contributions 1, 2, 

and 3 to the members 1 2 and  3, respectively, where   is to be paid to 

member  by Bob if the bill does not pass. 

•	 Finally, each member  votes, voting for the bill if  +   and against 

the bill otherwise. The bill passes if and only if at least two members vote 

for it. 

•	 The payoff of Alice is  − (1 + 2 + 3) if the bill passes and zero otherwise. 

The payoff of Bob is − if  the bill passes and  − (1 + 2 + 3) otherwise. 

Assuming that 23     22, use backward induction to compute a Nash equi-

librium of this game. (Note that Alice and Bob are the only players here because 
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the actions of the committee members are fixed already.) [Hint: Bob chooses not 

to  contribute when he is indifferent between contribution and not contributing at 

all.] 

Solution: Given any (1 2 3) by Alice, for each , write   () =   + for 

the "price" of member  for Bob. If the total price of the cheapest two members P 
exceeds  (i.e.,   () − max  () ≥ ), then Bob needs to pay at least 

 to stop the bill, in which case, he contributes 0 to each member. If the total 

price of the cheapest two members is lower than , then the only best response 

for Bob is to pay exactly the cheapest two members their price and pay nothing 

to the the remaining member, stopping the bill, which would have cost him . In  

sum, Bob’s strategy is given by ( P 
 +  if 0 0 (0 ) − max0 0 (0 )    and  = ∗ 

 
∗ (1 2 3) =  

0 otherwise, 

where ∗ is the most expensive member, which is chosen randomly when there is 

a tie.3 

Given ∗, as a function of (1 2 3), Alice’s payoff is ( P 
 − (1 + 2 + 3) if   () − max  () ≥  

 (1 2 3) =  
0 otherwise. P 

Clearly, this is maximized either at some (1 2 3) with   ()−max  () =  

 (i.e. the cheapest two members costs exactly  to Bob) or at (0 0 0). Since  

23     22, Alice can set the prices of 1 and 2 to 2 by contributing 

(2 − 1 2 − 2 0), which yields her  −  + 1 + 2  0 as   . Her  

strategy is 

 ∗ = (2 − 1 2 − 2 0)  

Bonus: Use backward induction to compute a Nash equilibrium of this game. 

without assuming 23    22. 

3Those who wrote Bob’s strategy wrongly as (0 0 0) or any other vector of numbers will lose 7 

points for that. Clearly, (0 0 0) cannot be a strategy for Bob in this game, showing a collosal lack of 

understanding of the subject. 
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Answer: First consider the case  ≤ 23. Then, Alice chooses a contribution vector 

(1 2 0) such that 1 + 2 + 1 + 2 = , 1 + 1 ≤ 3, and  2 + 2 ≤ 3. Such 

a vector is feasible because    23 and 3  2  1  0. Optimality of this 

contribution is as before. 

Now consider the case    23. Now, Alice must contribute to all members in 

order to pass the bill, and the optimality requires that the prices of all members 

are 2 (as Bob buys the cheapest two). That is, she must contribute 

 ∗∗ = (2 − 1 2 − 2 2 − 3)  

Since this costs Alice 32 − (1 + 2 + 3), she makes such a contribution to pass 

the bill if and only if 32 ≤  + (1 + 2 + 3). Otherwise, she contributes 

(0 0 0) and the bill fails. 

9.7 Exercises 

1. In Stackelberg duopoly example, for every 1 ∈ (0 1), find a Nash equilibrium in 

which Firm 1 plays 1. 

2. Apply backward induction to the "sequential Stackelberg oligopoly" with  firms: 

Firm 1 chooses 1 first, firm 2 chooses 2 second, firm 3 chooses 3 third, ..., and 

firm  chooses  last. 

3. [Homework 2, 2011] Use backward induction to compute a Nash equilibrium of the 

following game. 

1 

L R 

2 

1/2 1/2 l r 

1 2 1 

2 
X Y A B 4 x y 

4 0 4 1 0 10 

0 4 0 1 10 2 
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Figure 9.7: 

4. [Homework 2, 2002] Apply backward induction in the game of Figure 9.7. 

5. [Homework 2, 2002] Three gangsters armed with pistols, Al, Bob, and Curly, are 

in a room with a suitcase of money. Al, Bob, and Curly have 20%, 40% and 

70% chances of killing their target, respectively. Each has one bullet. First Al 

shoots targeting one of the other two gangster. After Al, if alive, Bob shoots, 

targeting one of the surviving gangsters. Finally, if alive, Curly shoots, targeting 

again one of the surviving gangsters. The survivors split the money equally. Find 

a subgame-perfect equilibrium. 

6. [Midterm 1 Make Up, 2001] Find all pure-strategy Nash equilibria in Figure 9.8. 

Which of these equilibria are can be obtained by backward induction? 

7. [Final Make up, 2000] Find the subgame-perfect equilibrium of the following 2-

person game. First, player 1 picks an integer 0 with 1 ≤ 0 ≤ 10. Then, player 2 

picks an integer 1 with 0 + 1 ≤ 1 ≤ 0 + 10. Then, player 1 picks an integer 2 

with 1 + 1  ≤ 2 ≤ 1 + 10. In this fashion, they pick integers, alternatively. At 

each time, the player moves picks an integer, by adding an integer between 1 and 

10 to the number picked by the other player last time. Whoever picks 100 wins 

the game and gets 100; the other loses the game and gets zero. 

8. [Final, 2001] Consider the extensive form game in Figure 9.9. 
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(a) Find the normal form representation of this game. 

(b) Find all rationalizable pure strategies. 

(c) Find all pure strategy Nash equilibria. 

(d) Which strategies are consistent with all of the following assumptions? 

(i) 1 is rational. 

(ii) 2 is sequentially rational. 

(iii) at the node she moves, 2 knows (i). 

(iv) 1 knows (ii) and (iii). 

9. [Final 2004] Use backward induction to find a Nash equilibrium for the following 

game, which is a simplified version of a game called Weakest Link. There are 4 

risk-neutral contestants, 1,2, 3, and 4, with "values" 1,  . . . ,  4 where 1  2  

3  4  0. Game has 3 rounds. At each round, an outside party adds the value 

of each "surviving" contestant to a common account,4 and at the end of third 

round one of the contestants wins and gets the amount collected in the common 

account. We call a contestant surviving at a round if he was not eliminated at 

a previous round. At the end of rounds 1 and 2, the surviving contestants vote 

out one of the contestants. The contestants vote sequentially in the order of their 

indices (i.e., 1 votes before 2; 2 votes before 3, and so on), observing the previous 

votes. The contestant who gets the highest vote is eliminated; the ties are broken 

at random. At the end of the third round, a contestant  wins the contest with 

probability  ( +  ), where   and  are the surviving contestants at the third 

round. (Be sure to specify which player will be eliminated for each combination of 

surviving contestants, but you need not necessarily specify how every contestant 

will vote at all contingencies.) 

10. [Midterm 1, 2011] A committee of three members, namely  = 1 2 3, is to decide 

on a new bill that would make file sharing more difficult. The value of the bill 

to member  is  where 3  2  1  0. The music industry, represented by 

4For example, if contestant 2 is eliminated in the first round and contestant 4 is eliminated in the 

second round, the total amount in the account is (1 + 2 + 3 + 4) + (1 + 3 + 4)+ (1 + 3) at the 

end of the game. 
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a lobbyist named Alice, stands to gain  from the passage of the bill, and the 

file-sharing industry, represented by a lobbyist named Bob, stands to lose  from 

the passage of the bill where     0. Consider the following game. 

•	 First, Alice promises non-negative contributions 1, 2, and  3 to the members 

1 2 and 3, respectively, where  is to be paid to member  by Alice if the 

bill passes. 

•	 Then, observing (1 2 3), Bob promises non-negative contributions 1, 2, 

and 3 to the members 1 2 and  3, respectively, where   is to be paid to 

member  by Bob if the bill does not pass. 

•	 Finally, each member  votes, voting for the bill if  +    and against 

the bill otherwise. The bill passes if and only if at least two members vote 

for it. 

•	 The payoff of Alice is  − (1 + 2 + 3) if the bill passes and zero otherwise. 

The payoff of Bob is − if  the bill passes and  − (1 + 2 + 3) otherwise. 

Use backward induction to compute a Nash equilibrium of this game. (Note that 

Alice and Bob are the only players here because the actions of the committee 

members are fixed already.) 
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