
Chapter 13 

Application: Implicit Cartels 

This chapter discusses many important subgame-perfect equilibrium strategies in opti-

mal cartel, using the linear Cournot oligopoly as the stage game. For game theory they 

provide many applications of single-deviation principle in repeated games. The first 

strategy is the simple trigger strategy, that switches to the myopic Nash equilibrium 

forever after any deviation. I first characterize the range of discount factors under which 

the monopoly prices can be supported by such a subgame-perfect equilibrium. Then, I 

find the optimal production supported by such a subgame-perfect equilibrium for any 

given discount factor. Next I study the Carrot & Stick strategies that reward the good 

behavior by switching to Carrot state and punish the bad behavior by switching to the 

Stick state. Here, in the Stick state, the firms can inflict painful punishments, which can 

be costly to themselves, by fearing that the failure to punish will prolong the punishment 

and delay the reward at the end. Finally, I consider a variation of the Carrot & Stick 

strategy to discuss the price wars. 

13.1 Infinitely Repeated Cournot Oligopoly 

I will use the infinitely repeated linear Cournot oligopoly as the main statel of a cartel. 

There are  firms, each with marginal cost  ∈ (0 1). In the stage game, each firm  

simultaneously produce  units of a good  and sell it at price  

 = max  {1 −  0} 
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where  = 1 + · · ·+ is the total supply. In the repeated game, all the past production 

levels of all firms are publicly observable, and each firm’s utility function is the discounted 

sum of its stage profits, where the discount factor is : 

∞X 
 =  ( (1 + · · ·+ ) − )  

=0 

where  is the production level of firm  at time . Sometimes it will be more convenient 

to use the discounted average value, which is (1 − ) . 

For any , write  

 () =   ( () − ) =   (max {1 −  0}− ) (13.1) 

for the (daily) profit of a  firm when each firm produces  and ( 
(1 − ( − 1)  − )2 

4 if ( − 1)  ≤ 1 
 () = max   ( (0 + ( − 1) ) − ) =  

0 0 otherwise 
(13.2) 

for the maximum profit of a  firm from best responding when all the other firms produce 

. 

13.2 Monopoly Production with Patient Firms 

If it is possible to enforce, it is in the firms’ best interest to produce the monopoly 

production level 

 = 12 

in total and divide the revenues according to their favored division rule, which could be 

attained by assigning some production levels to the firms that add up to  . For  the  

sake of simplicity, let us assume that they would like to divide it equally. Then, the 

above outcome is attained by simply each firm producing 

 =   = (1  − )  (2)  

As it has been established by the Folk Theorem, when the discount factor is high, such 

outcomes can be an outcome of a subgame-perfect equilibrium. In that case, the firms 

can make some tacit informal plans that form a subgame-perfect equilibrium and yield 
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the desired outcome. Since the plan is a subgame-perfect equilibrium they may hope 

that everybody will follow through in the absence of an official enforcement mechanism, 

such as courts. 

A simple  strategy  profile that leads to the above outcome is as follows: 

Simple Trigger Strategy: Each firm is to produce  until somebody 

deviates, and produce   = (1− )  ( + 1) thereafter. 

The above strategy profile yields each firm producing  forever, stipulating that 

they would fall back to the myopic Nash equilibrium production   if any firm deviates, 

leading to the breakdown of the cartel. This strategy profile may or may not be a 

subgame-perfect equilibrium, depending on the discount factor. This section is devoted 

to determine the range of discount factors under which it is indeed a subgame-perfect 

equilibrium. 

Once a firm deviates and the cartel breaks down, the firms are playing the stage-game 

Nash equilibrium regardless of what happens thereafter, which is a subgame-perfect Nash 

equilibrium of the subgame after break down, as it has been established before. Hence, 

by the single-deviation principle, it suffices to check whether a firm has an incentive to 

deviate while the cartel in place (i.e., no firm has deviated from producing ). In that 

case, according to the single deviation test, the average discounted value of producing 

 for a firm  is ¡ ¢ (1− )2 

 =  =  
4 

A deviation of producing  6=  yields  the average  value of  µ
 − 1 

¶ ¡ ¢ 
 () = (1− )  1− −  −  +   

2 

where the first term is the payoff from the current period, in which the other firms are ¡ ¢ 
  2 2

producing  each, and the second term  = (1− )  ( + 1) is the value of 

flow payoff of Nash equilibrium, starting from the next day. The best possible deviation 

payoff is ¡ ¢ ¡ ¢ 
 

∗ = max  () = (1− )   +   
= 6¡ ¢ ¡ ¢2+1−2where   =

4 is the profit from best responding to  . The  firm does not 

have an incentive to deviate if and only if 

 ≥ 
∗  
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Figure 13.1:  as a function of . 

i.e., ¡ ¢ ¡ ¢ 
  −   

 ≡ ≥   
) () −  (

Clearly,for any ,  is less then 1, and hence the simple trigger strategy profile above 
).is a subgame perfect equilibrium when the discount factor is large (larger than 

As  shown in Figure  13.1,  for small  ,  is reasonably small, and the monopoly prices 

are maintained in the simple trigger strategy equilibrium for reasonable values of . On  
  → 1 as →∞the other hand,  is increasing in , and   . Hence, for any given 

discount factor, as the number of firms becomes very large, the simple trigger strategy 

profile fails to be an equilibrium. 

13.3 Optimal Production Level with a Fixed  

For a fixed  and  with   , the simple trigger strategy above is not an equilibrium 

when the firms tries to maintain the monopoly prices on the path. Such a plan may likely 

to tempt the firms to over produce in equilibrium, breaking the cartel, and resulting in 

highly competitive outcome with low prices and profits. The firms may want to target a 

lower profit that can be supported by a simple trigger strategy equilibrium. This section 
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is devoted to find the optimal production level supported by a simple trigger strategy. 

More precisely, for a fixes  and , consider the following strategy profile: 

Simple Trigger Strategy (∗): Each firm is to produce ∗ until somebody deviates, 

and produce   = (1− )  ( + 1) thereafter. 

Note that in the outcome of this strategy profile each firm produces ∗ at each day, 

yielding the average discounted value of 

 ( ∗ ) =  ( ∗ ) =  ∗ (1−  ∗ − ) (13.3) 

to each firm. The main question is: Which ∗ maximizes the firms’ profits  subject 

to  the constraint that the  simple  trigger strategy profile is a subgame-perfect Nash 

equilibrium? 

Once again, since the myopic Nash equilibrium is played after the breakdown of the 

cartel, it suffices to check that there is no incentive to deviate on the path, in which 

all firms produced ∗ at all times. At any such history, any unilateral deviation  =6 ∗ 
yields the average discounted value of ¡ ¢ 

 () = (1− )  (1− ( − 1)  ∗ −  − ) +  

to the deviating firm. To see this, note that in the first day, the firm’s profit is  

 (1− ( − 1) ∗ −  − ) as it produces  and all the other firms produce ∗. This  one  

time profit is multiplied by (1− ). After the deviation, the firm gets the myopic Nash ¡ ¢ 
  2

equilibrium profit of   = (1− )  ( + 1)2 
every day, which has the average dis-¡ ¢ 

counted value of  . Since  the  firm gets this starting the next day, it is multiplied 

by . The simple trigger strategy profile above is a subgame perfect Nash equilibrium if 

and only if 

 ( ∗ ) ≥  () (∀ =6  ∗ )  

This constraint reduces to ¡ ¢ 
 ( ∗ ) ≥ max () = (1− )  ( ∗ ) +  ; (13.4) 

=∗ 6

the simple trigger  strategy  profile is a subgame-perfect equilibrium if and only if (13.4) 

is satisfied. Hence, the objective in this section is to maximize  (
∗) =  (∗) in (13.3) ¡ ¢ 

subject to the constraint  (∗) ≥ (1− )  (∗) +  in (13.4). 
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When   , the monopoly production  is an equilibrium value for ∗. (After  

all, it has been shown in the previous section that the simple trigger strategy for ∗ =  

is a subgame-perfect equilibrium if and only if  ≥ .) In that case, the optimal value 

for ∗ is  . When    , t is not an equilibrium value for ∗ . In that case, the 

minimum allowable value for ∗ is optimal, which is given by the equality ¡ ¢ 
 ( ∗ ) =  (1  − )  ( ∗ ) +    

i.e., 
(1 − ( − 1) ∗ − )2 

2 2
 ∗ (1 −  ∗ − ) = (1  − )	 +  (1 − )  ( + 1)  

4 
The explicit solution to the above quadratic equation is not important. The effect of 

the parameters on the solution can be gleaned from the equation. The left-hand side is 

independent of the discount factor, while the expression on the other side is decreasing 

in .  This is because  the payoff from deviation, which is multiplied by (1 − ), is larger 

than the myopic Nash equilibrium payoff, which is multiplied by . Hence, as the 

discount factor increases the right hand-side goes down, decreasing ∗ . This results 

in lower amount of production and higher amounts of profits, in the expense of the 

consumers. This is because more patient firms can maintain higher cartel prices without 

being tempted by the short-term opportunities. 

13.4	 Reward and Punishment: Carrot-Stick Strate-

gies 

In the above strategy profiles, the level of equilibrium quantities are limited by the 

fact that the punishment after a deviation resorts to Nash equilibrium of the stage 

game, which limits the deviators’ payoffs from below. In many games like the Cournot 

oligopoly, the average payoff of a player in the repeated game can be lower than his lowest 

equilibrium payoff in the stage game. Using such low SPE payoffs after a deviation, one 

can maintain even higher equilibrium payoffs in a SPE. Such equilibria are of course 

more sophisticated than the simple trigger strategies employed in the previous section. 

Among such equilibria a relatively simple Carrot&Stick strategy plays a central role. 

This section is devoted to constructing such a Carrot and Stick strategy in Cournot 

oligopoly. 
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Carrot & Stick Strategy: There are two states: Carrot and Stick. Each 

player plays  in Carrot state and  in Stick state. The game starts in 

Carrot state. At any , if all players play what they are supposed to play, 

they go to Carrot state at + 1; they  go  to Stick  state  at  + 1 otherwise. 

In a Carrot&Stick strategy, the Carrot state is used as a reward for following through 

and the Stick state is used as a punishment for deviation. Hence, the profit from  

(      ) is lower than the profit from  (       ). Note that punishment in the 

Stick state can be costly for everyone including the other players who are punishing the 

deviant player. They may than forgive the deviant in order to avoid the cost. In order 

to deter them from failing to punish the deviant, equilibrium prescribes that they, too, 

will be punished the next period if they fail to punish today. 

The average discounted payoff from the Carrot state is 

 =  ( )  (13.5) 

and the average discounted payoff from the Stick state is 

 = (1− )  () +  = (1− )  () +  ( )  (13.6) 

Single-deviation principle yields two constraints under which the Carrot & Stick 

strategy profile above is a subgame-perfect equilibrium. First, no player has an incentive 

to unilateral deviation in the Carrot state: 

 ≥ max (1− )  ( + (− 1)  − ) +  = (1− )  ( ) +  (13.7) 
 6= 

Here the first term  ( ) is the profit from  the  most-profitable deviation, which is 

multiplied by 1 −  as it is a single profit, and the second term  is the average 

discounted payoff from switching to the Stick state next day, which is multiplied by  

because it starts the next day. By substituting the value of  in (13.6) to (13.7), one 

can simplify (13.7) as 

1  
 =  ( ) ≥  ( ) +   ()  (13.8) 

1 +  1 +  

This condition finds a lower bound on the average discounted payoff  from Carrot: it 

has to be at least  as  high  as  the daily  profit from deviation, multiplied by 1 (1 + ), 

and the daily profit at the Stick state, multiplied by  (1 + ). 
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The second constraint is that no firm has an incentive to deviate unilaterally in the 

Stick state: 

 ≥ max (1− )  ( + ( − 1)  − ) +  = (1− )  () +  (13.9) 
 6= 

That is, applying the possibly painful punishment at the Stick state must be at least 

as good as deviating from this for one day and postponing it to the next period. This 

constraint simplifies to 

 ≥  ( )  (13.10) 

That is, the average discounted payoff in the stick state is at least as high as the daily 

profit from deviation at that state. By substituting the value of  from (13.6), one can 

write this directly, again, as a lower bound on the equilibrium profit: 

 ( ) ≥  ()  − (1− )  ()  (13.11) 

The Carrot & Stick gives a subgame-perfect equilibrium if and only if the simple 

constraints (13.8) and (13.11) are satisfied. 

In general one can obtain high values for selecting the punishment profit  () very 

low even negative. When the costs are zero (i.e.,  = 0), since the price is non-negative, 

the lowest payoff is also zero, and it is obtained from selecting  = 1 ( − 1). In  

that case,  () =  () = 0, and the constraint (13.11) is satisfied for all  . Hence, 

this value of equilibrium leads to a subgame perfect equilibrium if and only if (13.8) is 

satisfied: 
1 

 ( ) ≥  ( )  
1 +  

When this inequality is satisfied at  = 
 , then an optimal Carrot & Stick strategy 

for the firms is  =  = 1 (2) and  = 1 ( − 1).  This is the  case  when   ≥ ¡ ¢ ¡ ¢ 
    − 1. Otherwise, an optimal Carrot & Stick strategy is given by  = 

1 ( − 1) and  as the smallest solution to the quadratic equation (1 + )  ( ) =  

 ( ). 

When the marginal cost is positive (i.e.,    0), one can make  ( ) negative and 

as small as needed by selecting a large . In that case, the firms can inflict arbitrar-

ily painful punishments on the deviating firm. They do so by fearing that failure of 

punishment only delay the punishment and the subsequent reward one more period. 

Giving incentive to such punishment puts an upper bound on  through (13.11). This 
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upper bound is large when the marginal cost  is small. I will next describe the optimal 

strategy for small values of  so that one can choose   1 ( − 1). In  that  case,  in  

the the Stick state, the profit is   ( ) =  −, i.e., the firms simply incur the cost of 

the production as a loss, and the optimal deviation is to avoid this loss by producing 

nothing, i.e.,  ( ) = 0. Hence, the optimal Carrot & Stick strategy maximizes  ( ) 

subject to the constraints 

1  
 ( ) ≥  ( )−   (13.12)

1 +  1 +  
 ( ) ≥ (1− )  (13.13) 

A careful reader can check that one can select the second weak inequality as equality. 

(That inequality can be strict only when both inequalities are satisfied at the global 

optimum  .) That is, one can select  =  ( )  (1− ). In that case, the first 

inequality reduces to 

 ( ) ≥ (1− )  ( )  ¡ ¢ ¡ ¢ 
Therefore, when  ≥ 1−     , an optimal Carrot & Stick strategy is given by ¡ ¢ 
 =  and  =    (1− ). The  firms produce the monopoly outcome, and 

any deviation leads to the production of  that offsets the gain from optimal deviation. ¡ ¢ ¡ ¢ 
When    1−     , the constraint in the last displayed inequality is binding, 

and the production  in the optimal Carrot & Stick strategy is the smallest solution to 

the quadratic equation 

 ( ) = (1− )  ( )  

In a Carrot & Stick equilibrium, the firm produce large amounts yielding very small 

prices in order to punish deviations from the equilibrium. For example, in the optimal 

strategy above, the price becomes zero after a deviation. This can viewed as a price war. 

13.5 Price Wars 

The price wars in Carrot & Stick strategies above are supposed to last only one period. In 

general, the price wars can take much longer in other forms of equilibria, in which there 

are multiple Carrot states. This section is devoted to analysis  of  such subgame-perfect  

equilibria. 
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Price War: There are +1 states: Cartel, 1     . Each  firm produces 

 in Cartel state and  = 1 (− 1) in states 1     . The  game  

starts at Cartel state. If each firm produces the above amounts ( in Cartel 

state and 1 (− 1) in other states), then Cartel and  transition to Cartel 

and  transitions to +1 for all   . They  go  to  1 in the next period 

otherwise. 

On the path of the above strategy profile, the firms produce the cartel production 

 everyday. Any deviation from this production level starts a price war that lasts  

days. During the price war, the price is 0. If a firm is to deviate at any date during the 

punishment, the punishment starts all over again in order to punish the newly deviating 

firm. 

Note that the average discounted profit at the  cartel  state is  

 =  ( )  

and the average discounted profit at   state is ¡ ¢ 
1 − −+1  + −+1 = −  ( )  (13.14) 

where  is the marginal cost. Note that, assuming  ( ) ≥ 0, the  situation  improves  as  

they leave more war dates in the past and get closer to the start date of the cartel with 

positive payoffs: 

 ≥ −1 ≥ · · · ≥ 1 

In order to check that this is a subgame-perfect equilibrium, one needs to apply 

the single deviation test at each state, leading to  + 1  constraints. First, the single-

deviation test at the cartel state requires that the firms do not have incentive to deviate 

in the cartel state and start a price war: 

 ( ) ≥ (1 − )  ( ) +  1 (13.15) 

i.e., the value of cartel is higher than one period optimal deviation and the value of 

starting a war next day. As in the previous section, by substituting the value of 1 from 

(13.14), one simplifies this constraint to ¡ ¢ 
1 −   1 −  

 ( ) ≥  ( ) −   (13.16)
1 − +1 1 − +1 
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In any war state , the single-deviation test requires that a firm does not have an 

incentive to deviate and start the war all over again: 

 ≥ 1 

That is, the value of being in the th day of war is at least as good as not producing 

at all and avoiding the cost of production of a good that sells at price zero for one day 

and starting the war all over again in the next period. Since  ≥ 1 for each , this  

constraint is satisfied at each war period  if it is satisfied at the first day of the war, 

i.e., 

1 ≥ 1 

Therefore, the single-deviation test in the war states yields a single constraint: 

1 ≥ 0 

i.e., ¡ ¢ 
1− −+1 ( ) ≥  

−+1 (13.17) 

In summary, the price war strategies above form a subgame-perfect equilibrium if 

and only if the constraints (13.16) and (13.17) are satisfied. 

What is the optimal price war strategy profile for the firms? To answer this question, 

note that in the optimal equilibrium, one selects 1 = 0 (i.e., (13.17) is satisfied with 

equality) in order to provide the maximal deterrence in the cartel state: ¡ ¢ 
= −+1 1− −+1  ( )   

In that case, from the equivalent form (13.15), one can see that the constraint (13.16) 

reduces to: 

 ( ) ≥ (1− )  ( )  

This is the same constraint as the optimal Carrot & Stick equilibrium. As in there, in ¡ ¢ ¡ ¢ 
the optimal price war equilibrium, one selects  = 

 when  ≥ 1 −     

and  equal to the smallest solution to the quadratic equation 

 ( ) = (1− )  ( ) 

otherwise. 
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13.6 Exercises with Solutions 

1.	 [2010 Midterm 2] Consider the linear Cournot oligopoly above with  = 0. For  

each of the following strategy profiles, find the parameter values under which the 

strategy profile is a subgame-perfect equilibrium. 

(a) Each firm is to produce ∗ until somebody deviates, and produce   = 

1 ( + 1)  thereafter.
 

Solution: Just take  = 0  in Section 13.3. The condition is
 ¡	 ¢ 
 ( ∗ ) ≥ (1 − )  ( ∗ ) +    ¡	 ¢

2 
where  (∗) =  ∗ (1 − ∗),  (∗) = (1  − ( − 1) ∗ − ) 4, and   = 

1 ( + 1)2 
. 

(b) There are two states: Cartel and War.	 The game starts in the Cartel state. 

In the Cartel state, each firm produces ∗ . In the Cartel state, if each firm 

produces ∗, they remain in the Cartel state in the next period, too; otherwise 

they switch to the War state in the next period. In the War state, each firm 

produces 1. In the War state, if each firm produces 1, they  switch  to  

Cartel state in the next period; otherwise they remain in the War state in the 

next period, too. 

Solution: This is a price war strategy with one war period, or equivalently 

a Carrot & Stick strategy with  = ∗ and  = 1. The necessary and 

sufficient conditions for this to be a SPE are (13.8) and (13.11). Since  () =  

0 and  () = 12, these conditions simplify to 

(1 + )  ∗ (1 −  ∗ ) ≥ (1 − ( − 1)  ∗ )2 
4 

 ∗ (1 −  ∗ ) ≥ 
1 
 

42 

2. [Midterm 2, 2007] Consider the infinitely repeated game with the following stage 

game (Linear Bertrand duopoly). Simultaneously, Firms 1 and 2 choose prices 

1 ∈ [0 1] and 2 ∈ [0 1], respectively. Firm  sells 

1 −  if    
 (1 2) =  (1 − ) 2 if  =  

0 if    

⎧ ⎪⎪⎨ ⎪⎪⎩
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units at price , obtaining the stage payoff of  (1 2). For each strategy 

profile below, find the range of parameters under which the strategy profile is a 

subgame-perfect equilibrium. 

(a) They both charge  = 12 until somebody deviates; they both charge 0 

thereafter. 

Solution: After the switch, they produce 0 forever and the future moves do 

not depend on the current actions. Hence, the reduced game is identical to 

the original stage game. Since (0 0) is a SPE of the stage game, it passes the 

single-deviation test at such a history. Before the switch, we need to check 

that 

 = 18 ≥ (1 − ) · 14 +   · 0 
i.e.,  ≥ 12. (Note that by undercutting a firm can get 14− for any   0.) 

(b) There are  + 1  states: Cartel, 1     . Each  firm charges  = 12 in 

Cartel state and  = ∗ in War states 1     where ∗  12. The  

game starts at Cartel state. If each firm charges the above prices (12 in 

Cartel state and ∗ in War states), then Cartel and  transition to Cartel 

and  transitions to +1 for all   . They  go  to  1 in the next period 

otherwise. 

Solution: As in the price war with Cournot oligopoly there are two binding 

conditions for SPE. In the cartel state no firm should have an incentive to 

undercut: ¡ ¢ 
18 ≥ (1 − ) 4 +   1 −   ∗ (1 −  ∗ ) 2 +  +18 

i.e., ¡ ¢ ¡ ¢ 
1 − +1 8 ≥ (1 − ) 4 +   1 −   ∗ (1 −  ∗ ) 2 (13.18) 

Second, in the first day of War there is no incentive to deviate: 

1 ≥ (1 − )  ∗ (1 −  ∗ ) +  1 

i.e., 

1 ≥  ∗ (1 −  ∗ )  
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Here, ¡ ¢ 
1 − −+1 ∗ ) 2 +  −+1 =  ∗ (1 − 	 8 

is the average discounted payoff at . The condition deters against the 

deviations in which the a firm charges slightly less and gets all of the demand 

for a day. By substituting the value of 1 in the last equality, one can simplify 

this condition as ¡ ¢ 
14 ≥ 1 − −  ∗ (1 −  ∗ ) 	 (13.19) 

Since  ≥ 1, this condition further implies that there is no incentive to 

deviate at other war states: 

 ≥ (1 − )  ∗ (1 −  ∗ ) 2 +   

Therefore, the conditions are (13.18) and (13.19). 

13.7 Exercises 

1. [Homework 4, 2011] Consider the infinitely repeated game with linear Cournot 

oligopoly as the  stage game and  the discount factor  . In the stage game, there are 

   2 firms with zero cost and the inverse-demand function  = max  {1 −  0}. 
For each strategy profile below, find the range of  under which the strategy profile 

is a subgame-perfect Nash equilibrium. 

(a) At	 each , each  firm produces 1 (2) until some firm produces another 

amount; each firm produces 1 thereafter. 

(b) At each , firms 1, . . . ,  produce 12, 1/4,. . . ,  12, respectively, until some 

firm deviates (by not producing the amount that it is supposed to produce); 

they all produce 1 (+ 1)  thereafter. 

(c) There are  + 1  states: Cartel, 1,  . . . ,   . Each  firm produces 1 (2) 

in the Cartel state and 1 in states 1     . The game starts at the 

Cartel state. If each firm produces what it is supposed to produce in any 

given state, then Cartel leads to Cartel in the next period,  leads to +1 

in the next period for each     and  leads to Cartel. In any state, if 
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any player deviates from what it is supposed to produce, they go to 1 in 

the next period. 

2. [Midterm 2 Make Up, 2007] Consider the infinitely repeated game with discount 

rate  and the following stage game. Simultaneously, Seller chooses quality  ∈ 

[0∞) of the product and the Customer decides whether to buy at a fixed price . 

The payoff vector is (− 22  − ) if customer buys, and (−22 0) otherwise, 
where the first entry is the payoff of the seller and   0 is a constant. 

(a) Find the highest price  for which there is a SPE such that customer buys on 

the path everyday. 

(b) Find the set of parameters ̂, ,  and  for which the following is a SPE. We 

have a Trade state and  Waste states (12    ). In the trade state 

seller chooses quality  = , and the buyer buys. In any Waste state, the 

seller chooses quality level ̂ and the buyer does not buy. If everybody does 

what he is supposed to do, in the next period Trade leads to Trade, 1 leads 

to 2, 2 leads to 3,  . . . ,  −1 leads to , and   leads to Trade. Any 

deviation takes us to 1. The game starts at Trade state. 

3. [Midterm 2, 2007] Consider the infinitely repeated game with the following stage 

game (Linear Bertrand duopoly). Simultaneously, Firms 1 and 2 choose prices 

1 ∈ [0 1] and 2 ∈ [0 1], respectively. Firm  sells 

 (1 2) =  

⎧ ⎪⎪⎨ ⎪⎪⎩
 

1 −  if    

(1 − ) 2 if  =  

0 if    

units at price , obtaining the stage payoff of  (1 2). (All the previous prices 

are observed, and each player maximizes the discounted sum of his stage payoffs 

with discount factor  ∈ (0 1).) For each strategy profile below, find the range of 

parameters under which the strategy profile is a subgame-perfect equilibrium. 

(a) They both charge  = 12 until somebody deviates; they both charge 0 

thereafter. (You need to find the range of .) 
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(b) There are  +1 states: Collusion, the first day of war (1), the second day of 

war (2), ..., and the th day of war ().  The game starts  in the  Collusion  

state. They both charge  = 12 in the Collusion state and  = ∗ in the 

war states (1,.  . . ,  ), where ∗  12. If both players charge what they 

are supposed to charge, then the Collusion state leads to the Collusion state, 

1 leads to 2, 2 leads to 3,  . . . ,  −1 leads to , and   leads to the 

Collusion state. If any firm deviates from what it is supposed to charge at 

any state, then they go to 1. (Every deviation takes us to the first day of a 

new war.) (You need to find inequalities with , ∗, and  .) 

4. [Selected from Midterms 2 and make up exams in years 2002 and 2004] Below, 

there are pairs of stage games and strategy profiles. For each pair, check whether 

the strategy profile is a subgame-perfect equilibrium of the game in which the 

stage game is repeated infinitely many times. Each agent tries to maximize the 

discounted sum of his expected payoffs in the stage game, and the discount rate is 

 = 099. (Clearly explain your reasoning in each case.) 

(a)	 Stage Game: Linear Cournot Duopoly: There are two firms. Simultane-

ously each firm  supplies  ≥ 0 units of a good, which is sold at price 

 = max {1− (1 + 2)  0}. The cost is equal to zero. 
Strategy profile: There are two states: Cartel and Competition. The game 

starts at Cartel state. In Cartel state, each supplies  = 14. In Cartel state, 

if each supplies  = 14, they remain in Cartel state in the next period; 

otherwise they switch to Competition state in the next period. In Competi-

tion state, each supplies  = 12. In Competition state, they automatically 

switch to Cartel state in the next period. 

(b)	 Stage Game: Linear Cournot Duopoly of part (b). 

Strategy profile: There are two states: Cartel and Competition. The game 

starts at Cartel state. In Cartel state, each supplies  = 14. In  Cartel  

state, if each supplies  = 14, they remain in Cartel state in the next 

period; otherwise they switch to Competition state in the next period. In 

Competition state, each supplies  = 12. In Competition state, they switch 
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to Cartel state in the next period if and only if both supply  = 12; otherwise 

they remain in Competition state in the next period, too. 
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