
Chapter 11 

Subgame-Perfect Nash Equilibrium
 

Backward induction is a powerful solution concept with some intuitive appeal. Unfor-

tunately, it can be applied only to perfect information games with a finite horizon. Its 

intuition, however, can be extended beyond these games through subgame perfection. 

This chapter defines the concept of subgame-perfect equilibrium and illustrates how one 

can check whether a strategy profile is a subgame perfect equilibrium. 

11.1 Definition and Examples 

An extensive-form game can contain a part that could be considered a smaller game in 

itself; such a smaller game that is embedded in a larger game is called a subgame. A  

main property of backward induction is that, when restricted to a subgame of the game, 

the equilibrium computed using backward induction remains an equilibrium (computed 

again via backward induction) of the subgame. Subgame perfection generalizes this 

notion to general dynamic games: 

Definition 11.1 A Nash equilibrium is said to be subgame perfect if an only if it is a 

Nash equilibrium in every subgame of the game. 

A subgame must be a well-defined game when it is considered separately. That is, 

• it must contain an initial node, and 

• all the moves and information sets from that node on must remain in the subgame. 
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1  2  1  
(2,5)
 

  

••• 

 

(1,1) (0,4) (3,3) 

Figure 11.1: A Centipede Game 

Consider, for instance, the centipede game in Figure 11.1, where the equilibrium is 

drawn in thick lines. This game has three subgames. One of them is: 

1  
•
 (2,5)
 

 

(3,3) 

Here is another subgame: 

2  1  
• • 

  

(0,4) (3,3) 

(2,5)
 

The third subgame is the game itself. Note that, in each subgame, the equilibrium 

computed via backward induction remains to be an equilibrium of the subgame. 

Any subgame other than the entire game itself is called proper. 
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Now consider the matching penny game with perfect information in Figure 3.4. This 

game has three subgames: one after Player 1 chooses Head, one after Player 1 chooses 

Tail, and the game itself. Again, the equilibrium computed through backward induction 

is a Nash equilibrium at each subgame. 
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(2,6) 
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(0,1) (3,2) (-1,3) (1,5) 

Figure 11.2: An imperfect-information game 

Now consider the game in Figure 11.2. One cannot apply backward induction in 

this  game  because it is not  a perfect  information game.  One can  compute the  subgame-

perfect equilibrium, however. This game has two subgames: one starts after Player 1 

plays ; the second one is the game itself. The subgame perfect equilibria are computed 

as follows. First compute a Nash equilibrium of the subgame, then fixing the equilibrium 

actions as they are (in this subgame), and taking the equilibrium payoffs in this subgame  

as the payoffs for entering the subgame, compute a Nash equilibrium in the remaining 

game. 

The subgame has only one Nash equilibrium, as  dominates , and   dominates 

. In the unique Nash equilibrium, Player 1 plays  and Player 2 plays , yielding the 
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(0,1) (3,2) (-1,3) (1,5) 

2 

L R 

Figure 11.3: Equilibrium in the subgame. The strategies are in thicker arrows. 

payoff vector (3,2), as illustrated in Figure 11.3. Given this, the game reduces to 

XE 

1 

(3,2) (2,6) 

Player 1 chooses  in this reduced game. Therefore, the subgame-perfect equilibrium is 

as in Figure 11.4. First, Player 1 chooses  and then they play () simultaneously. 
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Figure 11.4: Subgame-perfect Nash equilibrium 

The above example illustrates a technique to compute the subgame-perfect equilibria 

in finite games: 
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Figure 11.5: A non-subgame-perfect Nash equilibrium 

•	 Pick a subgame that does not contain any other subgame. 

•	 Compute a Nash equilibrium of this game. 

•	 Assign the payoff vector associated with this equilibrium to the starting node, and 

eliminate the subgame. 

•	 Iterate this procedure until a move is assigned at every contingency, when there 

remains no subgame to eliminate. 

As in backward induction, when there are multiple equilibria in the picked subgame, 

one can choose any of the Nash equilibrium, including one in a mixed strategy. Every 

choice of equilibrium leads to a different subgame-perfect Nash equilibrium in the original 

game. By varying the Nash equilibrium for the subgames at hand, one can compute all 

subgame perfect Nash equilibria. 

A subgame-perfect Nash equilibrium is a Nash equilibrium because the entire game 

is also a subgame. The converse is not true. There can be a Nash Equilibrium that is not 

subgame-perfect. For example, the above game has the following equilibrium: Player 1 

plays  in the beginning, and they would have played ( ) in the proper subgame, as 

illustrated in Figure 11.5. You should be able to check that this is a Nash equilibrium. 

But it is not subgame perfect: Player 2 plays a strictly dominated strategy in the proper 

subgame. 
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Figure 11.6: A subgame-perfect Nash equilibrium 

Sometimes subgame-perfect equilibrium can be highly sensitive to the way we model 

the situation. For example, consider the game in Figure 11.6. This is essentially the 

same game as above. The only difference is that Player 1 makes his choices here at 

once. One would have thought that such a modeling choice should not make a difference 

in the solution of the game. It does make a huge difference for subgame-perfect Nash 

equilibrium nonetheless. In the new game, the only subgame of this game is itself, hence 

any Nash equilibrium is subgame perfect. In particular, the non-subgame-perfect Nash 

equilibrium of the game above is subgame perfect. In the new game, it is formally 

written as the strategy profile ( ) and takes the form that is indicated by the thicker 

arrows in Figure 11.6. Clearly, one could have used the idea of sequential rationality 

to solve this game. That is, by sequential rationality of Player 2 at her information 

set, she must choose . Knowing this, Player 1 must choose  . Therefore, subgame-

perfect equilibrium does not fully formalize the idea of sequential rationality. It does 

yield reasonable solutions in many games, and it is widely used in game theory. It will 

also be used in this course frequently. We will later consider some other more refined 

solution concepts that seem more reasonable. 

11.2 Single-deviation Principle 

It may be difficult to check whether a strategy profile is a subgame-perfect equilibrium 

in infinite-horizon games, where some paths in the game can go forever without ending 
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the game. There is however a simple technique that can be used to check whether 

a strategy profile is subgame-perfect in most games. The technique is called single-

deviation principle. 

I will first describe the class of games for which it applies. In a game there may be 

histories where all the previous actions are known but the players may move simultane-

ously. Such histories are called stages. For example, suppose that every day players play 

the battle of the sexes, knowing what each player has played in each previous day. In 

that case, at each day, after any history of play in the previous days, we have a stage at 

which players move simultaneously, and a new subgame starts. Likewise, in Figure 11.2, 

there are two stages. The first stage is where Player 1 chooses between  and , and  

the second stage is when they simultaneously play the 2x2 game. It is not a coincidence 

that there are two subgames because each stage is the beginning of a subgame. 

For another example, consider alternating-offer bargaining. At each round, at the 

beginning of the round, the proposer knows all the previous offers, which have all been 

rejected, and makes an offer. Hence, at the beginning we have a stage, where only the 

proposer moves. Then, after the offer is made, the responder knows all the previous 

offers, which have all been rejected, and the current offer that has just been made. This 

is another stage, where only the responder moves. Therefore, in this game, each round 

has two stages. 

Such games are called multi-stage games. 

In a multistage game, if two strategies prescribe the same behavior at all stages, then 

they are identical strategies and yield the same payoff vector. Suppose that two strategies 

are different, but they prescribe the same behavior for very, very long successive stages, 

e.g., in bargaining they differ only after a billion rounds. Then, we would expect that 

the two strategies yield very similar payoffs. If this is indeed the case, then we call 

such games "continuous at infinity". (In this course, we will only consider games that 

are continuous at infinity. For an example of a game that is not continuous at infinity 

see Example 9.1.) The single-deviation principle applies to multistage games that are 

continuous at infinity. 

Single-deviation test Consider a strategy profile ∗ . Pick any stage (after any 

history of moves). Assume that we are at that stage. Pick also a player  who moves at 

that stage. Fix all the other players’ moves as prescribed by the strategy profile ∗ at 
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the current stage as well as in the following game. Fix also the moves of player  at all 

the future dates, but let his moves at the current stage vary. Can we find  a move at the  

current stage that gives a higher payoff than ∗, given all the moves that we have fixed? 

If  the answer is Yes,  then  ∗ fails the single-deviation test at that stage for player . 

Clearly, if ∗ fails the single-deviation test at any stage for any player , then  ∗ 

cannot be a subgame-perfect equilibrium. This is because ∗ does not lead to a Nash 

equilibrium at the subgame that starts at that stage, as player  has an incentive to 

deviate to the  strategy  according to which   plays the better move at the current stage 

but follows ∗  in the remainder of the subgame. It turns out that in a multistage game 

that is continuous at infinity, the converse is also true. If ∗ passes the single deviation 

principle at every stage (after every history of previous moves) for every player, then it 

is a subgame-perfect equilibrium. 

Theorem 11.1 (Single-deviation Principle) In a multistage game that is continu-

ous at infinity, a strategy profile is a subgame-perfect Nash equilibrium if and only if it 

passes the single-deviation test at every stage for every player. 

This is a generalization of the fact that backward induction results in a Nash equi-

librium, as established in Proposition 9.1. For an illustration of the proof, see the proof 

of Proposition 9.1. The proof in general case considered in the theorem here is similar. 

Example 9.1 illustrates that the single-deviation principle need not apply when the game 

is not continuous at infinity. Since all the games considered in this game are continuous 

at infinity, you do not need to worry about that possibility. 

11.3 Application: Infinite-Horizon Bargaining 

This section illustrates how to apply single-deviation principle on the infinite-horizon 

bargaining game with alternating offers. The game is the same as the one analyzed in 

Section 10.3, except that there is no end date. That is, if an offer is rejected, then we 

always proceed to the next date at which the other player makes an offer. Note that 

the game is continuous at infinity, for if two strategies describe the same behavior at 

the first  periods, the payoff difference under the two strategies cannot exceed , which  

goes to zero, as  goes to ∞. 
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Recall that, when the game automatically ends after 2 periods, at any , the  proposer  

offers to take 
2−+1

1 − (−)
1 +   

for himself and leave the remaining, 

2−+1
 + (−)

 
1 +   

to the other player, and the other player accepts an offer if his share is at least as in this 

offer. When  →∞, the behavior is as follows: 

∗  : at  each  history  where   makes an offer, offer to take 1 (1 + ) and leave  (1 + ) 

to the other player, and at each history where  responds to an offer, accept the 

offer if and only if the offer gives  at least  (1 + ). 

We will now use the single-deviation principle to check that ∗ is a subgame-perfect 

equilibrium. There are two kinds of stages: (i) a player  makes an offer, (ii) a player  

responds to an offer. 

First consider a stage as in (ii) for some  [for an arbitrary history of previous offers], 

where the current offer gives  ≥  (1 + ) to player . Fix the strategy of player  

from this stage on as in ∗  , i.e., from  + 1  and on player   accepts an offer iff his share 

is at least as  (1 − ), and he offers  (1 + ) to the other player whenever he is to 

make an offer. Similarly, fix the strategy of player  from date  + 1  as in ∗  , so  that at  

 + 1  and thereafter  offers  (1 + ) to  and accepts an offer if and only if  gets at 

least  (1 + ). According to the fixed behavior, at  + 1,  offers to take 1 (1 + ) for 

himself, leaving  (1 + ) to , and  the  offer is accepted; the payoff of  associated with 

this outcome is 

+1 · 1 (1 − ) =  +1 (1 − )  

Now according to ∗  ,  at the  current stage,   is to accept the offer. This gives  the payoff 

of 

 ≥ +1 (1 + )  

If  deviates and rejects the offer, then according to the fixed behavior he gets only 

+1 (1 + ), and he has no incentive to deviate. Hence, ∗ passes the single deviation 

test at this stage for player . 



182 CHAPTER 11. SUBGAME-PERFECT NASH EQUILIBRIUM 

Now, consider a stage as in (ii) for some  [for arbitrary history of previous offers], 

where the current offer gives     (1 + ) to player . Fix the behavior of the players 

at  + 1  and onwards as in ∗, so that, independent of what happened so far, at  + 1, 

player  offers to take 1 (1 + ), which is accepted by , yielding payoff of +1 (1 − ) 

to . According to ∗  , player   is to reject the current offer and hence get this payoff. If  

he deviates and accepts the offer, he  will get  

  
+1 (1 + )  

Therefore, he has no incentive to deviate at this stage, and ∗  passes the single-deviation 

test at this stage. 

Now consider a stage as in (i) for some  [for arbitrary history of previous offers]. Fix 

again the moves of  at  and onwards as in ∗  . Fix also the moves of  at  and onwards 

as in ∗  . Given  the  fixed moves, if  offers  some  ≥  (1 + ), then the offer will be 

accepted, and  will obtain the payoff of (1 −  ) 
. If he offers     (1 + ), then  the  

offer will be rejected, and at  +1  they will agree to a division in which  gets  (1 + ). 

In that case, the payoff of  will be 

+2 (1 + )  

The payoff of  as a function of  is as in Figure 11.7. According to ∗  ,  at this stage,  

 offers  (1 + ) to the other player and clearly, any other offer gives a lower payoff 

to , and he has no incentive to deviate at this stage. Therefore, ∗  passes the single 

deviation test at this stage. We have covered all possible stages, and ∗ has passed the 

single deviation principle at every stage. Therefore, ∗ is a subgame-perfect equilibrium. 

In this game at each stage only one player moves. In the following lectures we 

will study the repeated games where multiple players may move at a given stage. The 

single-deviation principle will be very useful in those games as well. 

http:payoff.If
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Figure 11.7: The payoff of the proposer as a function of the offered share to the other 

party 

11.4 Exercises with Solutions 

1. [Midterm 2, 2001]Compute all subgame-perfect Nash equilibria of the following 

game: 
22 
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Solution: The only proper subgame starts after . This subgame can be written 

as 
  

 

 

3 3 0 2 

2 0 2 2 

in normal form. It has three Nash equilibria: ( ), ( ), and the mixed strategy 

Nash equilibrium  with 1 () = 2 () = 23. Since  3  52, ( ) entices Player 
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Figure 11.8: 
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3 00	 1 
3	 00 1 

Figure 11.9: 

2 to play  .  This results in  SPE  ( ). Similarly, the second SPE is ( ). If  

one picks  in the subgame, the expected payoff vector for the subgame is (2 2), 

and Player 2 plays . In the third SPE, Player 2 plays , and   would have been 

played in the subgame otherwise. 

2. [Homework 2, 2002] Compute two subgame-perfect equilibria in Figure 11.8. 

Solution: The only proper subgame starts after Player 1 plays . The subgame 

is a matching penny game. It has a unique Nash equilibrium, in which the each 

player puts equal weights on his moves. The expected payoff vector in equilibrium 

is (32 32). After  fixing the payoffs of the subgame this way, the game reduces 
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to the game in Figure 11.9, which can be written as 

  

 

 

 

32 32 32 32 

0 0 1 1 

3 3 0 0 

in normal form. This game does not have a proper subgame. The pure strategy 

Nash equilibria are ( ) and ( ). These result in subgame-perfect Nash equilib-¢	 ¢¡
reduced game has yet another Nash equilibrium, in which Player 1 puts equal 

¡

1 1 1 1 1 1
 1 +

2 
1 
2

in mixed strategies. The ria 
 and  +
 
  +
  +

2 2 2 2 2 2

probabilities on  and  and Player 2 puts equal probabilities on  and . This  

leads to a third subgame-perfect Nash equilibrium. 

3. [Final 2002] Ashok and Beatrice would like to go on a date. They have two options: 

a quick dinner at Wendy’s, or dancing at Pravda. Ashok first chooses where to go, 

and knowing where Ashok went Beatrice also decide where to go. Ashok prefers 

Wendy’s, and Beatrice prefers Pravda. A player gets 3 out his/her preferred date, 

1 out of his/her unpreferred date, and 0 if they end up at different places. All 

these are common knowledge. 

(a) Find a subgame-perfect Nash equilibrium.	 Find also a non-subgame-perfect 

Nash equilibrium with a different outcome. 

ANSWER: SPE : Beatrice goes wherever Ashok goes, and Ashok goes to 

Wendy’s. The outcome is both go to Wendy’s. Non-subgame-perfect Nash 

Equilibrium: Beatrice goes to Pravda at any history, so Ashok goes to Pravda. 

The outcome is each goes to Pravda. This is not subgame-perfect because it 

is not a Nash equilibrium in the subgame after Ashok goes to Wendy’s. 

(b) Modify the game a little bit:	 Beatrice does not automatically know where 

Ashok went, but she can learn without any cost. (That is, now, without 

knowing where Ashok went, Beatrice first chooses between Learn and Not-

Learn; if she chooses Learn, then she knows where Ashok went and then 

decides where to go; otherwise she chooses where to go without learning 

where Ashok went. The payoffs depend only on where each player goes –as 
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1,3 3,1 0,0 0,0 

Figure 11.10: 

before.) Find a subgame-perfect equilibrium of this new game in which the 

outcome is the same as the outcome of the non-subgame-perfect equilibrium 

in part (a). (That is, for each player, he/she goes to the same place in these 

two equilibria.) 

ANSWER: The extensive form game is as in Figure 11.10. Consider the 

strategy profile plotted in thicker arrows: Ashok plays Pravda, and Alice plays 

Don’t and goes to Pravda; if she played Learn, then she would have played 

Wendy’s if Ashok played Wendy’s and Pravda if Ashok played Pravda. As in 

the non-subgame-perfect equilibrium, they both go to Pravda at the end. This 

is a subgame-perfect equilibrium in the new game however. The only proper 

subgames are the two decision nodes where Beatrice moves after learning 

where Ashok went, and she plays best response at these nodes, yielding a Nash 

equilibrium in these little subgames. As in the original game, the strategy 

profile is a Nash equilibrium of the whole game. Therefore, it is a subgame-

perfect Nash equilibrium. 

4. [Midterm 2, 2007] The players in the following game are Alice, who is an MIT senior 

looking for a job, and Google. She has also received a wage offer  from Yahoo, but 

we do not consider Yahoo as a player. Alice and Google are negotiating. They use 

alternating offer bargaining, Alice offering at even dates  = 0 2 4     and Google 

offering at odd dates  = 1 3   .  When Alice  makes  an offer , Google  either  
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accepts the offer, by hiring Alice at wage  and ending the bargaining, or rejects 

the offer and the negotiation continues. When Google makes an offer , Alice  

•	 either accepts the offer  and starts working for Google for wage , ending  

the game, 

•	 or rejects the offer  and takes Yahoo’s offer ,  working  for Yahoo  for wage  

 and ending the game, 

•	 or rejects the offer  and then the negotiation continues. 

If the game continues to date ̄ ≤ ∞, then the game ends with zero payoffs for  

both players. If Alice takes Yahoo’s offer at   ̄, then the payoff of Alice is  

and the payoff of Google is 0, where  ∈ (0 1). If Alice starts working for Google 
at   ̄ for wage , then Alice’s payoff is  and Google’s payoff is ( − )  , 
where 

2       

(Note that she cannot work for both Yahoo and Google.) 

(a) Compute the subgame perfect equilibrium for ̄ = 4. (There are four rounds 

of bargaining.) 

ANSWER: 

•	 Consider  = 3. Alice will get  if she accepts Google,  if she accepts 

Yahoo, and 0 if she rejects and continues. Thus, she must choose ( 
 if  ≥  

3 =
   otherwise. 

Given this, Google gets 0 if     and  − if  ≥ . Therefore, it must 
choose 

3 =  

•	 Consider  = 2. Google  will  get   −  if it accepts an offer  by Alice 

and  − 3 next day if it rejects the offer. Hence Google must 

Accept iff ( − ) ≥  ( − 3) i.e.  ≤  (1− ) +  
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The best reply for Alice is to offer 

2 =  (1− ) +  

•	 [This is the most important step.] Consider   = 1. Consider Alice’s 

decision. Alice will get  if she accepts Google,  if she accepts Yahoo, 

and 2 if she rejects and continues. One must check whether she prefers 

Yahoo’s offer to continuing. Note that 

 (1− )  
   2 =  (1− ) + 2 ⇐⇒    =  

1− 2 1 +  

Since   2   ,  this implies that    2.  That is,  Alice prefers  
1+ 

Yahoo’s offer to continuing, and hence she will never reject and continue. 

Therefore, she must choose ( 
 if  ≥  

1 = 3 =
   otherwise. 

Google then must offer 1 = . 

•	 Consider  = 0.  It must be obvious  now  that it is the  same  as   = 2. 

Google Accepts iff  ≤ 2 and Alice offers 

0 = 2 =  (1− ) +  

(b) Take ̄ = ∞ . Conjecture a subgame-perfect equilibrium and check that the 

conjectured strategy profile is indeed a subgame-perfect equilibrium. 

ANSWER: 

From part (a), it is easy to conjecture that the following is a SPE: 

∗ :	 At an odd date Alice accepts an offer  iff  ≥ , otherwise she takes 

Yahoo’s offer. Google offers  = . At  an  even  date  Alice  offers  = 

 (1− ) + , and Google accepts an offer  iff  ≤ . 

Use single-deviation principle to check that ∗ is indeed a SPE. There are 4 

major cases two check: 

•	 Consider  the case Alice is offered . 
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—	 Suppose that  ≥  ≡ . Alice is supposed to accept and receive 

 today. If she deviates by rejecting  and taking Yahoo’s offer, she 

will get , which is not better that . If she deviates by rejecting and 

continuing, she will offer  at the next day, which will be accepted. 

The present  value of this is   =  (1− ) + 2   ≤ , i.e. this 

deviation yields even a lower payoff. 

—	 Suppose that    ≡ . Alice is supposed to reject it and take 

Yahoo’s offer with payoff . If she deviates accepting , she  will  

get the lower payoff of   . If she deviates by rejecting and 

continuing, she will get  next day, with a lower present value of 

 =  (1− ) + 2  . 

•	 Consider a case Google offers . If   ≥ , it will be accepted, yielding 

a payoff of  −  to Google. If   , then Alice will go to Yahoo, with 

payoff of 0 to Google. Therefore, the best response is to offer  =   0, 

as in ∗ . There is no profitable (single) deviation. 

•	 Consider  the case Google is offered . 

—	 Suppose that  ≤ . If Google deviates and rejects, it will pay  

tomorrow with payoff  ( − ) = ( − ), which is not better than 

 − . 

—	 Suppose that   . If Google deviates and accepts, then it will 

get only  − , while it would get the present value of  ( − ) =  

( − ) by rejecting the offer. 

•	 Consider a node in which Alice offers. Google will accept iff  ≤ . If  

she offers    she gets  next day, with present value of   . 

Therefore, the best reply is to offer  = , and  there  is  no  profitable 

deviation. 

[In part (b) most important cases are the acceptance/rejection cases, espe-

cially that of Alice. Many students skipped those cases, and wrongly con-

cluded that a non-SPE profile is a SPE.] 

5.	 Random Proposer Model: Consider -player version of the game in Section 

11.3. They have again one dollar to share and each is risk neutral with discount 
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factor  as before. The only difference is that the proposer is selected randomly. 

At any , each  player   is selected as the proposer with probability , and  the  

other players sequentially accept or reject in the increasing order. The game ends 

if all the responders accept. Compute the subgame-perfect Nash equilibria that 

are stationary, in that there exist divisions 1      such that each player  offers 

 = (1     ) whenever he is the proposer (and the offer is accepted). 

Solution: Write  for the expected share of player  before the proposer is 

selected: 

 = 11 + · · ·+   
At , if  a  player   offers  = (1     ) and the offer is rejected, the payoff of  

is +1. His  payoff is  if the offer is accepted. Hence, he accepts an offer  

iff  ≥  . Hence the proposer  6 such that  =  . He keeps =  offers  P 
 = 1−   to himself. Substituting these values in  · · ·+,6= = 11 +

one obtains 

 =  + (1− )Ã ! X 
=  1−   + (1− )  Ã 

= !6
X 

=  1−   +  
=1 

=  (1− ) +  

Here, the first equality is because all other players offer the same share to ; the  

second equality is by substitution of the values; the third equality is by simple 

algebra, and the last equality is by the fact that all the offers add up to 1. Solving 

for , one  obtains  

 =  

SPE: Each player  offers  to every  6= , keeping himself 1 −  (1− ), and  

accepts an offer  = (1     ) iff  ≥ . 

6. [Final 2007] Three senators, namely Alice, Bob, and Colin, are in a committee 

that determines the tax rate  ∈ [0 1]. Alice is a libertarian: her utility from 

setting the tax rate  at date  is  (1−  2). Bob is a moderate: his utility 
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is  1− ( − ̄)2 where ̄ ∈ (0 1) is a known constant. Colin is a liberal: his ¡ ¢ 
utility is  1− (1− )2 . At each date randomly one of them becomes a proposer, 

each having chance of 1/3. The proposer offers a tax rate  and the other two vote 

Yes or No in alphabetical order. If at least one of them votes Yes, then the game 

ends and  is set as the tax rate. If both says No, we continue to the next date. 

(a) Find a subgame perfect equilibrium of this game. (Hint: There exists a SPE 

with values  ≤ ̄ ≤  such that Alice always offers , Bob  always  offers 

̄ , and Colin always offers  .) 

Answer: Construct an equilibrium as in the hint. Note that when Alice 

makes an offer, she will need the vote of Bob because whenever Bob rejects 

Alice’s offer, so will the more liberal Colin. Also, she does not need Colin to 

vote yes. Hence, she will offer the lowest tax rate accepted by Bob. That 

offer will make Bob indifferent between Yes and No. Similarly, Colin will 

make Bob indifferent between Yes and No. Let’s write  for the expected 

value of Bob  at  the beginning  of  a  date before we know who  the proposer  is.  

If Bob says No, he will get . Therefore,  by  indifference, his payoffs from  

the offers of Alice and  Carol are  also  . Moreover, when he makes an offer, 

he offers ̄ , and it is accepted by one of the other two senators, yielding payoff 

of 1. Therefore, his payoff at the beginning of the period is 
2 1 

 =  + · 1 
3 3 

and hence, 
1 

 =  
3− 2
 

But he is indifferent between ,  , and  the  payoff :
 

 

1− ( − ̄)2 
= 1− ( − ̄)2 

=  
3− 2 

i.e., 
2 2 3 (1− )

( − ̄) = ( − ̄) =  
3− 2 

Therefore, r 
3 (1− )

 = ̄ − 
3− 2 r 
3 (1− )

 = ̄ +  
3− 2 



192 CHAPTER 11. SUBGAME-PERFECT NASH EQUILIBRIUM 

In order to complete the description of the strategy profile, one also needs to 

find which offers are accepted by each senator. Clearly, Bob accepts an offer 

if and only if  ∈ [  ]. The expected payoff of Alice at the beginning of 

a period  is  
1 ¡ ¢ 

 = 1−  2 + ̄ 2 +  2  3

and she must accept an offer iff  ≤ ̂, where  1− ̂ 2 = , i.e.,  r 
 

̂ = 1−  + ( 2 + ̄ 2 +  2 ) 3

Similarly, Colin accepts an offer  iff  ≥ ̂ , where  r 
 ¡ ¢

2 2 2
̂ = 1− 1−  + (1− ) + (1− ̄) + (1−  )

3

(which is obtained by replacing  with 1− ). This completes the answer. 

[It can be checked that ̂ + (1− ̂ )  1,  so  that at least  one of Alice and  

Colin accepts ̄ . This and the usual single deviation arguments would be 

enough for verifying that the above strategy profile is indeed a SPE. Also, 

the above solution assumes that  ≥ 0 and  ≤ 1.  If it turns  out that they  

are out of bounds, one takes them 0 and 1 and computes  accordingly.] 

(b) What happens as  → 1? Briefly interpret.  

Answer: As  → 1, 

 → ̄ ;  → ̄ ; ̂ → ̄ ; ̂ → ̄   

That is, in the limit all players offer ̄ and they accept an offer if and only if 

the offer is at least as good as ̄ . That is, the moderate senator’s preferences 

dictate the outcome. (This is a version of the "median voter theorem" in 

political science. The "theorem" states that the preferences of the voter who 

is in the middle prevail. This emerges formally in models as in the example 

here.) 

11.5 Exercises 

1. [Homework 3, 2004] Compute the subgame-perfect Nash equilibria in Figure 11.11. 
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Figure 11.13: 

2. [Homework 3, 2006] Compute the subgame-perfect Nash equilibria in Figure 11.12. 

3. [Midterm 1, 2006] Compute all the subgame-perfect equilibria in pure strategies 

in Figure 11.13. 

4.	 [Midterm 2 Make Up, 2011] Find all the subgame-perfect Nash equilibria of the 

following game. 

1 

A B 

l 

2 2 

2 
0 

1 

lr r 

A’ B’ 

L’ 

2 

L’R’ 

2 2 

0 

1 

a b 

L LR 

2 2 

R 

R’ 

5 0 6 1 5 0 0 1 
0

5 6 0 1 1 0 5 

5. Homework 3,	 2004] Find all subgame-perfect equilibria in the following game. 

Consider an employer and a worker. The employer provides the capital  (in 
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terms of investment in technology, etc.) and the worker provides the labor  (in √ 
terms of the investment in the human capital) to produce  ( ) =  , which  

they share equally. The parties determine their investment level (the employer’s 

capital  and the worker’s labor ) simultaneously. The worker cannot invest 
¯ ¯more than , where   is a very large number. Both capital and labor are costly, 

so that the payoffs for  the employer and  the worker are  

1 
 ( )−  
2 

and 
1 
 ( )− 2 
2 

respectively. So far the problem is same as in Exercise 1 in Section 8.5. The 

present problem differs as follows.  Before the  worker  joins the  firm (in which they 

simultaneously choose  and  ), the worker is to choose between working for 

this employer or working for another employer who pays the worker a constant q
wage ˜  

2
̃
 . (If he works for the other    0 makes him work as much as ˜ = 

employer, the current employer gets 0.) Everything described up to here is common 

knowledge. 

6. [Homework 3, 2006] Alice and Bob are competing to play a game against Casey. 

Alice and Bob simultaneously bid  and , respectively. The one who bids 

higher wins; if  = , the winner is determined by a coin toss. The winner pays 

his/her bid to Casey and play the following game with Casey: 

Winner\Casey L R 

T
 

B
 

3,1 0,0 

0,0 1,3 

Find two pure strategy subgame-perfect equilibria of this game. Which of the 

equilibria makes more sense to you? 

7. [Midterm 1 Make Up, 2002] Consider the following game of coalition formation 

in a parliamentary system. There are three parties , , and   who just won 

41, 35, and 25 seats, respectively, in a 101-seats parliament. In order to form 

a government, a coalition (a subset of {  }) needs 51 seats in total. The 
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parties in the government enjoy a total 1 unit of perks, which they can share in 

any way they want. The parties outside the government get 0 units of perks, and 

each party tries to maximize the expected value of its own perks. The process of 

coalition formation is as follows. First  is given right to form a government. If 

it fails, then  is given right to form a government, and if  also fails then  

is given to form a government. If  also  fails,  then the  game  ends  and each gets  

0. The party who is given right to form a government, say , approaches one of 

the other two parties, say , and  offers some  ∈ [0 1]. If   accepts, then they 

form the government and  gets 1 −  and  gets  units of perks. If  rejects the 

offer, then  fails to form a government (in which case, as described above, either 

another party is given right to form a government or game will and with 0 payoff). 

Applying backward induction, find a Nash equilibrium of this game. 

8. [A variation of Final Make Up, 2002] Consider the following game between two 

firms. Firm 1 either stays out, in which case Firm 1 gets 2 and Firm 2 gets 3, or 

enters the market where Firm 2 operates. If it enters, then the firms simultaneously 

choose between two strategies: Hawk (an aggressive strategy) and Dove (a peaceful 

strategy). In this subgame, if a firm plays Hawk and the other plays Dove, then 

Hawk gets 3 Dove gets 0; if both choose Hawk, then each gets -1, and if both play 

Dove, then each gets 1. 

(a) Compute the set of subgame-perfect Nash equilibria. 

(b) Which of the above equilibria is consistent with the assumption that Firm 2 

remains to believe that Firm 1 is rational in the information set of Firm 2. 

9. [Homework 3, 2004] Consider a two-player bargaining game with alternating offers, 

where the players try to divide a dollar (as in the class). Assume that the discount 

rate of player  is  ∈ (0 1), where  1 = 2. Using the single-deviation principle, 

check that the following is a subgame perfect equilibrium: at any given history 

where  makes an offer, he offers (1 − )  (1 − 12) to himself, leaving the rest to 

the other player (), and at any history where he responds to an offer, he accepts 

the offer if and only if his share is at least  (1 −  )  (1 − 12), where   = . 

10. Verify that the equilibrium identified in the random-proposer model of the previous 
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section is indeed a subgame-perfect equilibrium. 

11. Can	 you find a different subgame-perfect equilibrium in the random-proposer 

model above? 

12. [Final 2006] Alice and Bob own a dollar, which they need to share in order to 

consume. Alice makes an offer  ∈  = {001 002     098 099}; and observing 

the offer, Bob accepts it or rejects it. If Bob accepts the offer, Alice gets 1 −  and 

Bob gets . If he reject, then each gets 0. 

(a) Compute all the subgame-perfect equilibria in pure strategies. 

(b) Now suppose that their cousin Carol sells a contract for $0.01. The contract 

requires  that  Bob is to  pay  1 dollar to  Carol  if  Bob accepts an offer  that 

is less than ̄, where  ̄ ∈  is chosen by Bob at the time of purchase of the 

contract. In particular, consider the following time-line: 

•	 Bob decides whether to buy a contract from Carol and determines ̄ if 

he chooses to buy; 

•	 Alice observes Bob’s decision (i.e. whether he buys the contract and ̄ if 

he buys); 

•	 Then, they play the bargaining game above, where Bob pays Carol 1 

dollar if he accepts an offer   ̄.
 

Find all the subgame-perfect equilibria in pure strategies.
 

(c) In part (b) assume that Alice cannot observe whether Bob buys a contract 

(and in particular the value of ̄ if he buys). Find all the subgame-perfect 

equilibria in pure strategies. 

(d) In part (b) assume that Alice observes whether Bob buys a contract but does 

not observe the value of ̄ if he buys. Find all the subgame-perfect equilibria 

in pure strategies. 
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