

Road Map

- 1. Sequential Rationality
- 2. Sequential Equilibrium
- 3. Economic Applications
 - 1. Sequential Bargaining with incomplete information
 - 2. Reputation

Sequential Bargaining

- 1. 1-period bargaining 2 types
- 2. 2-period bargaining 2 types
- 3. 1-period bargaining continuum
- 4. 2-period bargaining continuum

Sequential bargaining 2-period

- A seller S with valuation
 0
- A buyer B with valuation v;
 - B knows v, S does not
 - v = 2 with probability π
 - = 1 with probability $1-\pi$

- 1. At t = 0, S sets a price $p_0 \ge 0$;
- 2. B either
 - buys, yielding (p₀,v-p₀)
 - or does not, then
- 3. At t = 1, S sets another price $p_1 \ge 0$;
- 4. B either
 - buys, yielding $(\delta p_1, \delta(v-p_1))$
 - or does not, yielding (0,0)

Solution, 2-period

- 1. Let $\mu = \Pr(v = 2|\text{history at t=1})$.
- 2. At t = 1, buy iff $v \ge p$;
- 3. If $\mu > \frac{1}{2}$, $p_1 = 2$
- 4. If $\mu < \frac{1}{2}$, $p_1 = 1$.
- 5. If $\mu = \frac{1}{2}$, mix between 1 and 2.
- 6. B with v=1 buys at t=0 if $p_0 \le 1$.
- 7. If $p_0 > 1$, $\mu = Pr(v = 2|p_0,t=1) \le \pi$.

Sequential bargaining 2periods

If B does not buy at t = 0, then at t=1

- S sets a price $p_1 \ge 0$;
- B either
 - buys, yielding $(\delta p_1, \delta(v-p_1))$
 - or does not, yielding (0,0).

14.12 Economic Applications of Game Theory Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.