
Lecture Note 19 — Causal Inference Using the Regression
Discontinuity Design

David Autor, Massachusetts Institute of Technology

The Regression Discontinuity Design

During the in-class component of this lecture/topic, we will study the 2010 paper on securitization 
and subprime mortgages by Keys, Mukherjee, Seru, and Vig. In this lecture note, we’ll review the 
framework that Keys et al. use for causal inference, which is called the Regression Discontinuity 
design (RD). You can now add RD to your toolbox along with Difference-in-Differences (DD), 
Randomized Control Trials (RCT), and Instrumental Variables (IV).

As usual, we seek to estimate the causal effect of a treatment. We posit that for each individual i, 
there exists a pair of potential outcomes: Yi1 for what would occur if i were exposed to the treatment 
and Yi0 if i were not exposed. The causal effect of the treatment is represented by the difference 
T = Yi1 −Yi0. The fundamental problem of causal inference (FPCI) is that we cannot observe both 
Yi1 and Yi0.

We have so far handled the FPCI using three primary techniques: randomization into treatment 
and control groups (RCT), difference-in-difference estimation, and instrumental variables estimation. 
Each method attempts to find t reated and control units that are i n expectation comparable—that 
is, their potential outcomes if treated (or if untreated) are expected to be the same—and then 
contrasts outcomes among those treated relative to those not treated to estimate the average effect 
of treatment on the treated (ATT).

The Regression Discontinuity (RD) estimator takes a fresh approach to identifying a causal 
relationship when the treatment and control groups do not have potential outcomes that are identical 
in expectation. It instead looks for units that are arbitrarily close in terms of their potential outcomes 
and yet are treated differently (one assigned to treatment, the other assigned to control) due to some 
bright line rule that determines assignment. This situation occurs more commonly than one might 
expect. For example, the result of a national election can be decided by a single vote, or the cutoff 
for which children are allowed to enter 1st grade in a given year may depend on whether they were 
born before or after midnight on September 1 six years earlier. Arbitrary cutoffs are inevitable for 
administrative purposes. A driver either is or is not speeding. A potential candidate for office either 
does or does not have the requisite number of signatures to get on the ballot. A library book is not 
overdue until the moment that it is.
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While arbitrary cutoffs are necessary for administration, why are they useful for economists?
Glad you asked. Define a variable X that is used to determine the cutoff above/below which a
person (or unit) i is or is not assigned to treatment. For example, X could be the percentage of
voters for candidate A or X could be the exact hour of birth. We will refer to X as the run variable,
and we’d like that variable to be continuous.

Imagine there are two underlying relationships between potential outcomes and treatment, rep-
resented by E[Yi1|Xi] and E[Yi0|Xi]. Thus at each value of Xi, the causal effect of treatment is
E [T |Xi = x] = E[Yi1|Xi = x] − E[Yi0|Xi = x]. Let’s say that individuals to the right of a cutoff c

(e.g., Xi ≥ 0.5) are exposed to treatment, while those to the left (Xi < 0.5) are denied treatment.
We therefore observe E [Yi1|Xi] to the right of the cutoff and E [Yi0|Xi] to the left of the cutoff.

As we consider units i that are arbitrarily close to the threshold, it may be reasonable to assume
that:

limE [Yi1|Xi = c+ ε] = limE [Yi1 Xi = c+ ε] ,
ε↓0 ε↑0

|

limE [Yi0|Xi = c+ ε] = limE [Yi0 Xi = c+ ε] .
ε↓0 ε↑0

|

That is, for units that are almost identical, we may be willing to assume that had both been treated
(or not treated), their outcomes would have been arbitrarily similar. If this assumption is plausible,
we can form a Regression Discontinuity estimate of the causal effect of treatment on outcome Y

using the contrast:
T̂ = limE [Yi|Xi = c+ ε]− limE [Yi|Xi = c+ ε] ,

ε↓0 ε↑0

which in the limit is equal to:
T = E [Yi1 − Yi0|Xi = c] .

The RD estimator estimates the causal effect of a treatment as the ‘jump’ in an outcome variable,
Y , as near-identical units on one side of a discontinuity, c, are allocated to treatment while those
on the other side are allocated to non-treatment. Note that while RD estimation does estimate the
treatment effect given that xi = c, if the treatment effect is not the same for everyone, it will not
give you the average treatment effect on the treated. For example, imagine you are studying the
effect of a scholarship on student grades. If you randomly assign scholarships, you would get the
average treatment effect for the entire sample of students (i.e the average treatment effect on the
treated). If, instead, scholarships are given to students with SAT scores above 2100, and you use an
RD design, you will get the treatment effect on those students with SAT scores of 2100, but not the
average treatment effect for all students who received the scholarship.

Keys et al. use the RD estimator to test for adverse selection in the market for subprime
mortgages.
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