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Lecture 23: Working with large data files: NetCDF, databases



summary
* Large problem sources

* Tools
* Dask
* Dask + xarray
* Dask + xarray + open data sets (in zarr)

* Other tools
e Dask + Pandas
* Hadoop, spark



Large sources of digital data abound

* Physics * Medical
* Imaging
* Sequencing

e Particle
* Astro

Image courtesy of Jason McLellan, University
of Texas at Austin. Used with permission.

e Earth and environment  Materials
* Biodiversity and ecosystems
* Topography

(e 7 2
* Fire, Water, Land Use =48

e o © The Materials Project. https://legacy.materialsproject.org.
License: CC-BY.
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Digital sources

* Sequencing * CCD

~—_ Moore's Law

Image courtesy of NIH.
Image is in the public domain.

e Simulation

Image courtesy of DOE. Image is in the public domain.
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© Todd Mason, Mason Productions Inc. All rights
reserved. This content is excluded from our
Creative Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use.

© Rubin Observatory/NSF/AURA. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use.

Common theme is
generation of PiB of
digital information, useful
for analysis.

Need some tools that
scale. ,
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Tools for large data repositories

* Dask (and more)

import numpy as np

100

* Dask is a library that is designed and xnp=np.ones ((100,100))
maintained to be compatible with X0P
Numpy, Dataframes and SciKit. array([[1., 1., 1., ..., 1., 1., 1.1,
. [1., 1., 1., ..., 1., 1., 1.1,
* |t prowdes is Ay Aoy soniy Yan Bow 2:1s
* lazily evaluated arrays and other data (1o 1., 1e) veey 1., 1., 1.1,
structures 1oy Lay Tay wnay Loy 14y Tad,
L . ) (1., 1., 1., +.., 1., 1., 1.11)
 distributed (multi-process and multi-
H import dask.array as da
nOde) analySIS . . xd'a):da.ones((l@@zll%),chunks=(10, 10))
* It has handy features for reading in xda
collections of files in standard forms
* Builtin to xarray. e S
. . . Bytes 78.12kiB 800B
* Designed to help V\flth_ array like T -
problems that don’t fit in memory okt WOTE:  “BOChG
and/or can leverage multiple TS e e 100

processors for speed.
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Dask

* First developed in 2016

o Official web site https://dask.org = o omm

2025 Dask core developers. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use.

* Provides “distributed” data structures that are like those in Numpy,

Dataframes, Scikit

» except the data structures can be distributed across processors and
computers
e computations on the distributed data structures can execute in parallel
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Dask for Numpy

* Dask “array” has same
interfaces as Numpy, but
for Dask objects.

* Introduces “chunks” that
allow for parallel
execution

e computation is evaluated
lazily and can be
launched on separate
local remote processes (in
“clusters”)

12/06/21

import dask.array as da

xda=da.ones((100,100),chunks=(50, 50))

xda
Array Chunk
Bytes 78.12kiB 19.53 kiB
Shape (100, 100) (50, 50)
Count 4 Tasks 4 Chunks
Type floaté4 numpy.ndarray 100
z=xda+xda.T
4
Array Chunk
Bytes 78.12kiB 19.53 kiB
Shape (100, 100) (50, 50)
Count 12 Tasks 4 Chunks
Type floaté4 numpy.ndarray 100

z.compute()

arrayCll2.; 2i5 265 wwny iy 2uy- s
(235 2oy 245 vy 245 2y s
2

120 25y 2010 comnp: 2oy Rap: 2o
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100

100

Example showing dask
array.

It has a ones() function
like numpy, but can take
a “chunk” size.

.T is a transpose, same
as numpy.

computation is not
executed immediately,
only when required.

.compute() can be used
to trigger computation.



Dask lazy chunk
evaluation?

* Dask works fine with numpy,
but it behaves a little
differently.

* Arrays can be created with
“chunks” that correspond to
parallel parts to operate on.

 Computations (e.g. max() ) are
first formed into a “graph” of
operations, but not executed.

* They are only executed when
needed. For example, by
compute().
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[3]:

[3]:

import numpy as np

import dask.array as da
data = np.arange(100_000).reshape(200, 500)

print(data)
data.max()

[l 0 1 2% wuze
[ 500 501 502 ...
[ 1000 1001 1002 ...

[98500 98501 98502 ...
[99000 99001 99002 ...
[99500 99501 99502 ...

99999

data_dask=da. from_array(data, chunks=(100, 100))

display(data_dask)
data_dask.max()

497 498  499]
997 998 999]
1497 1498 1499]

98997 98998 98999]
99497 99498 99499]
99997 99998 99999] ]

Array Chunk
Bytes 781.25kiB 78.12 kiB
Shape (200, 500) (100, 100)
Count 10 Tasks 10 Chunks 500
Type inté4 numpy.ndarray
Array Chunk
Bytes 8B 808
Shape (0 ()
Count 26 Tasks 1 Chunks

Type int64 numpy.ndarray

data_dask.max().compute()

99999

Numpy arrays can
be mapped to
“chunked” dask

arrays.

Numpy
computations are
immediate.

Dask computations
are lazy i.e.
defined as a
“graph” of
operations and
then executed
when
needed/requested.



Dask compute graph —

 Computing on a Dask data structure T
generates a “graph” of operations. T

* The “graph” is a tree of dependent [ e |
and independent operations called el
“tasks” that can be grouped into sets
that can execute concurrently. 33

* The tasks (square boxes) are nodes of T
the graph. The boxes start at base as 7 T
chunks for the data structure. (N —

* The arrows show “edges” fug lf;":_'

* The graph for max is a “directed == ) () (=

acyclic graph” (DAG).



Dask chunk examples

e Dask uses “chunks” to
sub-divide work that can
execute concurrently.

* The graph generated
starts from the chunking

* When dask arrays are
created a chunk size can
be specified.
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data_dask=da. from_array(data, chunks=(200, 500))
display(data_dask)

data_dask.max()

dm=data_dask.max()

dm.visualize()

Array Chunk

Bytes 781.25 kiB 781.25 kiB §
Shape (200, 500) (200, 500)
Count 1 Tasks 1 Chunks 500
Type inté4 numpy.ndarray
)

amax-aggregate

0,0

(0,0)

10



display( a.mean()
print( a.mean()
display( a.T

Dask lazy examples @i,

print(  np.sin(a)

e The Numpy math e s s

Shape 1] 0

operations are defined
for daSk arrays. Type floaté4 numpy.ndarray

dask.array<mean_agg-aggregate, shape=(), dtype=float64, chunksize=(), chunktype=numpy.ndarray>

Array Chunk

. . Bytes 781.25kiB 7812 kiB §
* Math operations will be Shape (00 2001 (100,100
Count 20 Tasks 10 Chunks

| a Zy. Type inté4 numpy.ndarray 200

dask.array<transpose, shape=(500, 200), dtype=int64, chunksize=(100, 100), chunktype=numpy.ndarray>

Array Chunk g
Bytes 781.25 kiB 7812 ki 8
Shape (200, 500) (100, 100) g
Count 20 Tasks 10 Chunks 500

Type floaté4 numpy.ndarray

dask.array<sin, shape=(200, 500), dtype=float64, chunksize=(10@, 100), chunktype=numpy.ndarray>

12/06/21 12.010 Lec24 11



Dask operations can span chunks

e.g. Can apply operations like np.diff() to dask arrays. Graph is more complex.

np.diff(a)
Array Chunk
Bytes 779.69 kiB 77.34 kiB 8
Shape (200, 499) (100, 99) «
Count 116 Tasks 18 Chunks 499
Type int64 numpy.ndarray

np.diff(a).visualize()
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Dask clusters under the hood - |

* Dask “chunks”, “blocks”, “tasks” and
“graphs” can be a way to harness
parallelism on a single node or on tens
to hundreds of nodes.

 Single node has a default cluster.

e Can customize local mac_hine cluster or
create cluster on collection of nodes.

* Tasks are allocated to cluster through
client interface

e Dask Arrays handle allocation
transparently
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import numpy as np
import dask.array as da
import dask

from dask.distributed import Client, LocalCluster
cluster = LocalCluster()
client = Client(cluster)

display(cluster)
display(client)

Status Scaling

LocalCluster

Dashboard: http://127.0.0.1:8787/status Workers: 4
Total threads: 16 Total memory: 64.00 GiB
Status: running Using processes: True

» Scheduler Info

Client

Connection method: Cluster object Cluster type: distributed.LocalCluster

Dashboard: http://127.0.0.1:8787/status

» Cluster Info

12.010 Lec24
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Dask clusters under the hood - |l

* Client interface is used to
launch parallel tasks by Dask

* With Array, Dataframe,
xarray interface this is done
automatically

12/06/21
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def square(x):

return x kx 2
def neg(x):

return -x
def loop(x):
while ( True ):

continue
return 0
client.map(square, range(10))
client.map(neg, A)
client.map(loop, [0])
total = client.submit(sum, B)
total.result()

r @ >
nunn

-285

14



Laptop test

import numpy as np
import dask.array as da

X2.5 using Dask 21 (date e T 8 S 2t s

%time data_sum = data.sum()

data_sum
sum_dask_dag. visualize()
(1576800000, )
n CPU times: user 971 ms, sys: 1.41 ms, total: 972 ms
Wall time: 972 ms
788419656.3967832
sum-aggregate 11: data_dask = da.from_array(data, chunks=len(data) // 8)

display(data_dask)
sum_dask_dag = data_dask.sum()
%time sum_dask = sum_dask_dag.compute()

- n sum_dask
Array Chunk
Bytes 11.75 GiB 1.47 GiB m 1
@ @ Shape (1576800000,) (197100000, 1576800000
Count 8 Tasks 8 Chunks
| 7 || a | | 5 | | 6 | | 0 l 1 2 3 Type floaté4 numpy.ndarray
é@ CPU times: user 2.87 s, sys: 19.9 ms, total: 2.89 s
Wall time: 375 ms
1] 788419656.396776
Lzl lef(=][e][e]{«][=]]=]
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Dask out of core

* Things that won’t fit in
memory.

* On a small memory system
Dask automates running
things in chunks that fit in
memory

* Can use this to work with
arrays larger than memory

12/06/21

Kernel Restarting
The kernel for dask_large_memory.ipynb appears to have died. It will restart automatically.
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import xarray as xr

ds = xr.tutorial.open_dataset('air_temperature',

Dask and xarray

‘1 =1})

ds.air
xarray.DataArray ‘air' (time: 2920, lat: 25, lon: 53)
M = Array Chunk \
* Dask works with xarray and . QR
W |t h D a t a f rames Shape (2920,25,53) (2920, 25, 25) -53%0 N\ 5
Count 4 Tasks 3 Chunks
Type float32 numpy.ndarray 63

* With both this can be used to

lat (lat) float32 ]
work with larger collections of 3 T =
input data in collections of » Atibtes: (1)

multiple files.

In the xarray example earlier, the air-
* Previously looked at xarray, temperature variable is a Dask array
without delving into dask. chunked in the third dimension.
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Dask and xarray

* Dask supports operations on
xarrays with a task graph

# We can look at how to evaluation works in this case
ds.air.data.max().visualize()

* in this way even the file open,
for example, is handled lazily.
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amax-aggregate

I(0,0,0)I I(0,0,l)l

amax-partial

[(0.0,0)| |(0.0.1)|

I (0,0,0) ‘

|(0. 0,1) |

open_dataset

open_dataset

amax-partial

open_dataset

18



Dask and xarray, multiple netcdf files

* With xarray wrapper can load
multiple files as chunks

# we can extend to chunk multiple files
lgit clone https://github.com/pangeo-data/tut

(32,0,0)

al-data.git

dsnc=xr.open_mfdataset('tutorial-data/sst/*.nc')

Here the graph
includes sweeping over
all the files in the
collection.

.visualize()

dsnc.sst.data.ma

19

12.010 Lec24



Dask and xarray, multi TiB cloud data

* Multi-file and lazy evaluation
graphs from Dask, provides the
basis for working with multi-TiB
data sets.

e This works especially well if

* the datasets are openly available
(not behind a pay-wall, license
wall etc..)

* the datasets themselves are
chunked, for example using the
zarr format.
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aWw
v"

Registry of Open Data on AWS

Multi-Scale Ultra High Resolution (MUR) Sea Surface Temperature
(SST)

| climate W corth observation J environmentat Il natural resource il oceans il satelite imagery J sustainabilty il water Jl weathes |

Description Resources on AWS

A global, gap-free, gridded, daily 1 km Sea Surface Temperature (SST) dataset created Description

by merging multiple Level-2 satellite SST datasets. Those input datasets include the MUR Level 4 SST dataset in Zarr format. The zarr/ directory contains a
NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the JAXA Advanced zarr store chunked (6443, 100, 100) along the dimensions (time, lat,
Microwave Scanning Radiometer 2 (AMSR-2) on GCOM-W1, the Moderate Resolution lon).

Imaging Spectroradiometers (MODIS) on the NASA Aqua and Terra platforms, the US
Navy microwave WindSat , the Advanced Very High

(AVHRR) on several NOAA satellites, and in situ SST observations from the NOAA
iQuam project. Data are available from 2002 to present in Zarr format. The original
source of the MUR data is the NASA JPL Physical Oceanography DAAC. arn:aws:s3:::mur-sst/zarr
AWS Region

us-west-2

Resource type
S3 Bucket

Amazon Resource Name (ARN)
/

Update Frequency

The temporal extent of the Zarr store is 2002-06-01 to 2020-01-20.
AWS CLI Access (No AWS account required)

License aws s3 1s s3://mur-sst/zarr/ —-no-sign-request

https://registry.opendata.aws/mur/

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use.
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Dask and xarray and MUR SST

import xarray as xr

mur_sst = xr.open_zarr('https://mur-sst.s3.us-west-2.amazonaws.com/zarr-vl',6consolidated=True)
display(mur_sst)

display(mur_sst.analysed_sst.data.blocks[0,0,0])

* MUR SST is a NASA daily sea-
Su rfa ce tem p erature p ro d u Ct' Dimensions: (time: 6443, lat: 17999, lon: 36000)

v Coordinates:

covering 2002 to present day at -

. lon (lon) float32 ;

~ 1 k m re S O | ut I O n . time (time) datetime64[ns] =
v Data variables:

* the zarr archive in AWS covers 2002 analysed_sst  (time,latlon) floats? =

analysis_error (time, lat, lon) float32 ]

- 2020 o mask (time, lat, lon) float32 =

sea_ice_fraction (time, lat, lon) float32

* in numbers it has about 4X1012 » Attributes: (47)
values and is about 15TiB.

Bytes 123.53 MiB 123.53 MiB

* in principle can download for Shape (51799, 3600) (5 1799, 3600
Count 141792 Tasks 1Chunks & 3600

analysis, but many times want to
look at some part in space and time.

1799

Two commands using xarray and dask provide
lazy access to the entire data.
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Dask and xarray and MUR SST

’ IVIOVie Of temperature in region SST, 2002-06-01T09:00:00.000000000
around Boston | v/ =
| O 2 9 ”
42.50 1 0 =
* This involves extracting more data Hw -
42.00 H I')
41.75 4 . - n
* Somewhat slow to my laptop at aso :
home ) % 0

.0

* To cloud machine, using parallel dask
can download all 20 years in < 60
seconds.
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Dask and xarray and MUR SST

* Key pieces

 Starting dask workers

$ dask-scheduler

$ dask-worker ——nprocs 30 ——memory-limit
2GB ——-nthreads 2 tcp://127.0.0.1:8786

* Filtering to region of interest

ds=mur_sst.analysed_sst
mask_lon=(ds.lon >= -71.5) & ( ds.lon <= -68)
mask_lat=(ds.lat >= 41) & ( ds.lat <= 43)
import dask
with dask.config.set(x*{'array.slicing.split_large_chunks":
False}):

ds_masked=ds.where(mask_lon & mask_lat, drop=True)

* Filtering and dask together make process

x1000+ faster




import pandas as pd
import numpy as np
import dask.dataframe as dd

index = pd.date_range("2021-09-01", periods=2400, freq="1l

df = pd.DataFrame({"a": np.arange(2400), "b": list("abcad
display(df)

ddf = dd.from_pandas(df, npartitions=10)
display(ddf)

2021-09-01 00:00:00

* Dask also works similarly with

a
0
1
2021-09-01 02:00:00 2
3
4

Pandas Dataframes to speed up

larger Dataframe processing. .

2021-12-09 19:00:00 2395

2021-12-09 20:00:00 2396

2021-12-09 22:00:00 2398

* There is also a proprietary library
“RAPIDS” that works with a GPU 2400 rows x 2 columns

dataframe (cudf ) to allow e &

npartitions=10

dataframes on multiple GPUs in
pa r.a | |e I . 2021-09-11 oo:oo:tfﬁ

2021-11-30 00:00:00

a
d
2021-12-09 21:00:00 2397 d
b
e

object

2021-12-09 23:00:00
Dask Name: from_pandas, 10 tasks
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Spark and Hadoop

 Some other tools that are used for
large data analysis are
* Hadoop
e Spark

* These largely leverage “map,
reduce” abstraction.

* They are very common in
“business analytics”

12/06/21

Apache Hadoop

The Apache™ Hadoop® project develops open-source software for re
computing.

o

© 2006-2025 The Apache Software Foundation. All rights reserved.
This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use.

PACHE

A
SpQrK Download Libraries ~ Documentation ¥ Examples

Unified engine for large-
scale data analytics

GET STARTED

© 2018 The Apache Software Foundation. All rights reserved.
This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use.
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