

12.010 Computational
Methods of Scientific

Programming 2021

Lecture 23: Working with large data files: NetCDF, databases

Summary

• Large problem sources

• Tools
• Dask
• Dask + xarray
• Dask + xarray + open data sets (in zarr)

• Other tools
• Dask + Pandas
• Hadoop, spark

12/07/21 12.010 Lec24 2

Large sources of digital data abound

• Physics • Medical
• Particle • Imaging
• Astro • Sequencing

Image courtesy of Jason McLellan, University
of Texas at Austin. Used with permission.

• Earth and environment • Materials
• Biodiversity and ecosystems
• Topography
• Fire, Water, Land Use

These two images © Source unknown. All rights reserved. This content
is excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use.

12/06/21 12.010 Lec24

© The Materials Project. https://legacy.materialsproject.org.
License: CC-BY.

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://legacy.materialsproject.org

© Todd Mason, Mason Productions Inc. All rights
reserved. This content is excluded from our
Creative Commons license. For more information, Digital sources see https://ocw.mit.edu/help/faq-fair-use.

• Sequencing • CCD

Image courtesy of NIH. © Rubin Observatory/NSF/AURA. All rights reserved. This
content is excluded from our Creative Commons license. For Image is in the public domain.
more information, see https://ocw.mit.edu/help/faq-fair-use.

Common theme is
generation of PiB of

• Simulation digital information, useful
for analysis.

Need some tools that
Image courtesy of DOE. Image is in the public domain.

12/06/21 12.010 Lec24 scale. 4

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

 Tools for large data repositories
• Dask (and more)

• Dask is a library that is designed and
maintained to be compatible with
Numpy, Dataframes and SciKit.

• It provides
• lazily evaluated arrays and other data

structures
• distributed (multi-process and multi-

node) analysis
• It has handy features for reading in

collections of files in standard forms
• Builtin to xarray.
• Designed to help with array like

problems that don’t fit in memory
and/or can leverage multiple
processors for speed.

12/06/21 12.010 Lec24 5

Dask

• First developed in 2016

• Official web site https://dask.org
© 2025 Dask core developers. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use.

• Provides “distributed” data structures that are like those in Numpy,
Dataframes, Scikit
• except the data structures can be distributed across processors and

computers
• computations on the distributed data structures can execute in parallel

12/06/21 12.010 Lec24 6

https://dask.org/
https://dask.org/
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

Dask for Numpy

• Dask “array” has same
interfaces as Numpy, but
for Dask objects.

• Introduces “chunks” that
allow for parallel
execution
• computation is evaluated

lazily and can be
launched on separate
local remote processes (in
“clusters”)

12/06/21 12.010 Lec24

Example showing dask
array.

It has a ones() function
like numpy, but can take
a “chunk” size.

.T is a transpose, same
as numpy.

computation is not
executed immediately,
only when required.

.compute() can be used
to trigger computation.

7

12.010 Lec24

Dask lazy chunk
evaluation?
• Dask works fine with numpy,

but it behaves a little
differently.

• Arrays can be created with
“chunks” that correspond to
parallel parts to operate on.

• Computations (e.g. max()) are
first formed into a “graph” of
operations, but not executed.

• They are only executed when
needed. For example, by
compute().

12/06/21

Numpy arrays can
be mapped to
“chunked” dask
arrays.

Numpy
computations are
immediate.

Dask computations
are lazy i.e.
defined as a
“graph” of
operations and
then executed
when
needed/requested.

8

Dask compute graph
• Computing on a Dask data structure

generates a “graph” of operations.
• The “graph” is a tree of dependent

and independent operations called
“tasks” that can be grouped into sets
that can execute concurrently.
• The tasks (square boxes) are nodes of

the graph. The boxes start at base as
chunks for the data structure.
• The arrows show “edges”
• The graph for max is a “directed

acyclic graph” (DAG).

12/06/21 12.010 Lec24 9

Dask chunk examples

• Dask uses “chunks” to
sub-divide work that can
execute concurrently.

• The graph generated
starts from the chunking

• When dask arrays are
created a chunk size can
be specified.

12/06/21 12.010 Lec24 10

Dask lazy examples
• The Numpy math

operations are defined
for dask arrays.

• Math operations will be
lazy.

12/06/21 12.010 Lec24 11

Dask operations can span chunks

e.g. Can apply operations like np.diff() to dask arrays. Graph is more complex.

12/06/21 12.010 Lec24 12

Dask clusters under the hood - I
• Dask “chunks”, “blocks”, “tasks” and

“graphs” can be a way to harness
parallelism on a single node or on tens
to hundreds of nodes.

• Single node has a default cluster.

• Can customize local machine cluster or
create cluster on collection of nodes.

• Tasks are allocated to cluster through
client interface

• Dask Arrays handle allocation
transparently

12/06/21 12.010 Lec24 13

Dask clusters under the hood - II
• Client interface is used to

launch parallel tasks by Dask

• With Array, Dataframe,
xarray interface this is done
automatically

12/06/21 12.010 Lec24 14

 Laptop test
x2.5 using Dask

12/06/21 12.010 Lec24 15

Dask out of core

• Things that won’t fit in
memory.

• On a small memory system
Dask automates running
things in chunks that fit in
memory

• Can use this to work with
arrays larger than memory

12/06/21 12.010 Lec24 16

Dask and xarray

• Dask works with xarray and
with Dataframes

• With both this can be used to
work with larger collections of
input data in collections of
multiple files.

• Previously looked at xarray,
without delving into dask.

In the xarray example earlier, the air-
temperature variable is a Dask array
chunked in the third dimension.

12.010 Lec24 17 12/06/21

Dask and xarray

• Dask supports operations on
xarrays with a task graph

• in this way even the file open,
for example, is handled lazily.

12/06/21 12.010 Lec24 18

Dask and xarray, multiple netcdf files

• With xarray wrapper can load
multiple files as chunks

Here the graph
includes sweeping over
all the files in the
collection.

12/06/21 12.010 Lec24 19

Dask and xarray, multi TiB cloud data
• Multi-file and lazy evaluation

graphs from Dask, provides the
basis for working with multi-TiB
data sets.

• This works especially well if
• the datasets are openly available

(not behind a pay-wall, license
wall etc..)

• the datasets themselves are
chunked, for example using the
zarr format.

12/06/21 12.010 Lec24 20

https://registry.opendata.aws/mur/

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use.

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://registry.opendata.aws/mur

Dask and xarray and MUR SST

• MUR SST is a NASA daily sea-
surface temperature product,
covering 2002 to present day at
~1km resolution.
• the zarr archive in AWS covers 2002

– 2020.
• in numbers it has about 4x1012

values and is about 15TiB.
• in principle can download for

analysis, but many times want to
look at some part in space and time.

12/06/21 12.010 Lec24 21

Two commands using xarray and dask provide
lazy access to the entire data.

 Dask and xarray and MUR SST
• Movie of temperature in region

around Boston

• This involves extracting more data

• Somewhat slow to my laptop at
home

• To cloud machine, using parallel dask
can download all 20 years in < 60
seconds.

12/06/21 12.010 Lec24 22

Dask and xarray and MUR SST
$ dask-scheduler • Key pieces

• Starting dask workers
$ dask-worker --nprocs 30 --memory-limit
2GB --nthreads 2 tcp://127.0.0.1:8786

• Filtering to region of interest
ds=mur_sst.analysed_sst
mask_lon=(ds.lon >= -71.5) & (ds.lon <= -68)
mask_lat=(ds.lat >= 41) & (ds.lat <= 43)
import dask
with dask.config.set(**{'array.slicing.split_large_chunks':
False}):

ds_masked=ds.where(mask_lon & mask_lat, drop=True)

• Filtering and dask together make process
x1000+ faster

12/06/21 12.010 Lec24 23

Dask and dataframes

• Dask also works similarly with
Pandas Dataframes to speed up
larger Dataframe processing.

• There is also a proprietary library
“RAPIDS” that works with a GPU
dataframe (cudf) to allow
dataframes on multiple GPUs in
parallel.

12/06/21 12.010 Lec24 24

© 2006-2025 The Apache Software Foundation. All rights reserved.
This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair-use.

Spark and Hadoop

• Some other tools that are used for
large data analysis are
• Hadoop
• Spark

• These largely leverage “map,
reduce” abstraction.

• They are very common in
“business analytics”

© 2018 The Apache Software Foundation. All rights reserved.
This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair-use. 12/06/21

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01 26

https://ocw.mit.edu/
https://ocw.mit.edu/terms

