12.010 Computational
Methods of Scientific
Programming 2021

Lecture 22: Version control and software management practices

summary

 Version control and related tools, motivation

* Using “Git” and “Github”
* status, log, add, commit, fork, clone, push, remote, branch, pull request....

* Adding automated testing
e CI/CD Note —

Some specific tools barely
existed 5 years ago! They are

* Pu inshing useful, but the tools here are
* Zenodo Towards FAIR principles for research software Z” arlea of fr‘:q“e”t
e JOSS evelopment.
http://dx.doi.org/10.3233/DS-190026 The concepts are more

. ntainer
Containers durable.

12/02/21 12.010 Lec23 2

http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.3233/DS-190026

Version control

* In software projects it is common for code to evolve through multiple
“versions” this can result in potential for confusion. Programs may
unexpectedly stop working when functions/data structures that
depend on each other get out of sync etc...

* Version control is used to
* keeping track of versions of files

 avoid confusion over what bits of code are being used to build a program or
system

Versions of python packages on 12.010 cloud

system.

About 450 packages in total, each with their
own version.

cnh@mit.edu@ip-172-30-1-201:~$ conda list -e | head -50
This file may be used to create an environment using:

$§ conda create --name <env> --file <this file>

platform: linux-64
_libgcc_mutex=0.l=conda_forge
_openmp_mutex=4.5=1_gnu
_r-mutex=1.0.0=anacondar_1
affine=2.3.0=pypi_0
aiohttp=3.7.4.post0=py37h7£8727e_2
alembic=1.6.5=pypi_0
alsa-1lib=1.2.3=h516909a_0
antlr-python-runtime=4.7.2=py37h89c1867_1002
anyio=3.3.0=pypi_0
appdirs=1.4.4=pyhd3eblb0_0
argcomplete=1.12.3=pyhd3eblb0_0
argon2-cffi=20.1.0=py37h27c£fd23_1
asciitree=0.3.3=py_ 2
asdf=2.8.1=pyhd8edlab 0
astropy=4.3.1=py37h09021b7_0
async-timeout=3.0.1=py37h06a4308_0
async_generator=1.10=py37h28b3542 0
atk-1.0=2.36.0=h28cd5cc_0
attrs=21.2.0=pyhd3eblb0_0
awscli=1.20.58=py37h89c1867_0
oabel=2.9.1=pypi 0

Each package is made up of multiple python
files (>60,000)
SUHUTILL . CUUT LY=L /L4™OoVUTL= 4Vl /UPL/ LL JII/UDTLY Liuu .« =~laauc Py | we

find: ‘./.cph_tmp7h2d7717': Permission denied
63269 63269 5253480

Keeping things like this all “consistent” is the
origin of version control and related tools

For software used in research these sorts of
tools are important for reproducibility,
sharing, collaboration etc...

12/02/21

12.010 Lec23 4

Modern version control/software
reproducibility “tooling”

* Git
* Git has become the standard tool for version control
* Free online services like “Github” and “Gitlab” provide a nice web interface and make Git easier to

use
* Git itself is a software tool separate from Github/Gitlab. Github/Gitlab make collaborating using

git easier.

 Continuous Integration/Continuous Deployment (CI/CD)
* Fancy name for automated testing to avoid breaking things by mistake
* Online services like Github provide ways to integrate CI/CD into version control environment

* Publishing
* Zenodo/JOSS — DOI to reference/cite/find software versions
* Containers - A system for capturing specification of a whole computer + application to help make
things portable.

Git basics

* The best way to understand git is to use it, following some tutorial. It
makes a lot more sense in use, than on paper!

e Git organizes collections of code in “repositories”

* A repository is just a directory tree with files and some special
information in a “.git” subdirectory

Creating a new repository by hand

$ mkdir my cool software repository
$ cd my cool software repository

$ git init

Initialized empty Git repository in /home/jpy class/mit/12.010/cnh@r
tory/.git/

$ 1s -altr

total 20

drwxr-x--- 29 cnh@mit.edu cnh@mit.edu 12288 Dec 2 01:31

drwxr-xr-x 3 cnh@mit.edu cnh@mit.edu 4096 Dec 2 01:31

drwxr-xr-x 7 cnh@mit.edu cnh@mit.edu 4096 Dec 2 01:31

$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

$

12/02/21 12.010 Lec23

A git repository
has a special
subdirectory
“git” atits
“root”.

Files and
directories can
be added.

.git keeps track
of history of
“committed”
adds/deletes
and edits.

Add a file

$ echo 'print("hello")' > hello.py
$ python hello.py

hello

$ git status

On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be ¢
hello.py

nothing added to commit but untracked files present (us
$ git add hello.py

$ git status

On branch master

No commits yet
Changes to be committed:

(use "git rm --cached <file>..." to unstage)
new file: hello.py

12/02/21 12.010 Lec23

Files and directories can be created in
the repository directory tree.

Note:
Don’t do anything in .git

Git is designed for files of code and text
files. It does not work well with images,
binary files etc...

Here we created a file “hello.py” and
added it to the current, active files
tracked by git.

To make the change a permanent we
must “commit” changed file.

https://hello.py

Commit the changes

In git, in addition to adding any

_ . _ . ”)
$ git commit -m "add a first file" hello.py new flles’ you commit Changes
[master (root-commit) 195aba7] add a first file that you want to keep.
1 file changed, 1 insertion(+)
create mode 100644 hello.py
$ git status

On branch master

The sequence of commits and

nothing to commit, working tree clean changes is stored in the git

it 1 i
e Rl o | | _ directory so that you can compare
Author: Chris Hill <cnh@mit.edu> different versions of fi|es’

Date: Thu Dec 2 01:42:16 2021 +0000 _ _ o
directories of repositories.

. . $ git show
add a first file

s B Author: Chris Hill <cnh@mit.edu>
Date: Thu Dec 2 01:42:16 2021 +0000

The commit id number is unique,
SO YOu can compare any commit

diff --git a/hello.py b/hello.py .

new file mode 100644 W|th another'

index 0000000..11b15bl
--- /dev/null

+++ b/hello.py

ee -0,0 +1 ee

add a first file

+print("hello")
s
12/02/21 12.010 Lec23 9

Working with Git via Github

e Git on its own can be a bit @ christophernhill / fall-2021-12.010 pubiic

fiddly to use, especially
for sharing and publishing
code and remote
collaboration. Lots of
projects use Github to
streamline workflow.

Creating a copy of an
existing repository,
making a change and
then submittinF change
back to origina
repository is a good way
to start. In Github this
starts with a “fork” of the
existing repository.

12/02/21

& Unwatch ~ 1 ¢ Star | 2 % Fork 1

Fork fall-2021-12.010

Where should we fork fall-2021-12.010?
[| altMiTgem
e CBIOMES

christophernhill-binders

Fork to your own Github account.

H christophernhill-dev

B cnh-org-test

1 cryocode

G darwinproject
earthmachine

@ ecco-croup
ecco-summerschool-2019

s mens-manus-machina

% christophernhill-dev /fall-2021-12.010 Public

forked from christophernhill/fall-2021-12.010

H mghpcc-projects

12.010 Lec23 10

After creating a “fork”, download to local
compute using “clone”.

$ git clone https://github.com/christophernhill-dev/£fall-2021-12.010.git
Cloning into 'fall-2021-12.010'...

remote: Enumerating objects: 418, done.

remote: Counting objects: 100% (418/418), done.

remote: Compressing objects: 100% (390/390), done.

remote: Total 418 (delta 182), reused 24 (delta 9), pack-reused 0
Receiving objects: 100% (418/418), 3.72 MiB | 9.35 MiB/s, done.
Resolving deltas: 100% (182/182), done.

$ cd £fall-2021-12.010

$ git status

On branch main

Your branch is up to date with 'origin/main’'.

nothing to commit, working tree clean

$

12/02/21 12.010 Lec23 11

Now lets make a change — we do this on a

“branch”

cnh@mit.edu@ip-172-30-1-201:~/fall-2021-12.010$ git checkout -b chris/small-test-edit
Switched to a new branch 'chris/small-test-edit'
cnh@mit.edu@ip-172-30-1-201:~/£fall-2021-12.010$ git status
On branch chris/small-test-edit
nothing to commit, working tree clean
cnh@mit.edu@ip-172-30-1-201:~/£fall-2021-12.010$ echo 'print("hello")' > hello.py
cnh@mit.edu@ip-172-30-1-201:~/£fall1-2021-12.010$ git status
On branch chris/small-test-edit
Untracked files:
(use "git add <file>..." to include in what will be committed)
hello.py

nothing added to commit but untracked files present (use "git add" to track)
cnh@mit.edu@ip-172-30-1-201:~/£fall1-2021-12.010$ I

cnh@mit.edu@ip-172-30-1-201:~/£fall1-2021-12.010$ git add hello.py
cnh@mit.edu@ip-172-30-1-201:~/£fall1-2021-12.010$ git commit -m "add hello" hello.py
[chris/small-test-edit 47d85bf] add hello

1 file changed, 1 insertion(+)

create mode 100644 hello.py
cnh@mit.edu@ip-172-30-1-201:~/£fall-2021-12.010$ git status
On branch chris/small-test-edit
nothing to commit, working tree clean
cnh@mit.edu@ip-172-30-1-201:~/£all-2021-12.010% l

12/02/21 12.010 Lec23

There are lots of ways to use
Git.

A common practice is to
create a “branch” for a set of
edits.

The default branch is called
master or main, here we
create a branch with a name
to remind us what it is for.

Once we have created our file
we need to add and commit.

This records our new changes
locally, associated with the
branch.

12

After we are happy with our local changes we
can “push” them to our repository fork.

cnh@mit.edu@ip-172-30-1-201:~/fall-2021-12.010$ git push
fatal: The current branch chris/small-test-edit has no upstream branch.
To push the current branch and set the remote as upstream, use

git push --set-upstream origin chris/small-test-edit

cnh@mit.edu@ip-172-30-1-201:~/fall-2021-12.010$ git push --set-upstream origin chris/small-test-ed
it

Username for 'https://github.com': christophernhill

Password for 'https://christophernhill@github.com':

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 2 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 283 bytes | 283.00 KiB/s, done.

Total 3 (delta 1), reused 0 (delta 0)

remote: Resolving deltas: 100% (1/1), completed with 1 local object.

remote:

remote: Create a pull request for 'chris/small-test-edit' on GitHub by visiting:

remote: https://github.com/christophernhill-dev/fall-2021-12.010/pull/new/chris/small-test-ed
it

12/02/21 12.010 Lec23

We use “git push” to send
changes back to the repository
we cloned.

Here we use

git push --set-upstream origin
chris/small-test-edit

to “push” changes to our
Github repository.

13

After push our online repo has changes

¥ christophernhill-dev / fall-2021-12.010 pubiic The online repo

forked from christophernhill/fall-2021-12.010 also has a

“«
<> Code 1l Pull requests () Actions [71] Projects 0 wiki @ Security |7 Insights 53 Settings Com pare &
o pull request “

X button.
P chris/small-test-edit had recent pushes 3 minutes ago Compare & pull request

M
¥ main ~ ¥ 2 branches © 0 tags Go to file Add file ~ o
Switch branches/tags X
hill:main. 11 Contribute ~ QG Fetch upstream ~
[Find or create a branch...

R
Branches Tags ed2a71b yesterday O 110 commits N
v/ main default C

Add files via upload 28 days ago

chris/small-test-edit

Vigw all branichies Add files via upload last month 8

W GrPU Create vec_add.cu 9 days ago
N

12/02/21 12.010 Lec23 14

Current state

1. Official repository unchanged

2. Fork of official repository has a
“branch” with changes that we
made on a local machine and
“pushed” to Github.

3. Local machine has clone of our
fork. It has branch and main

cnh@mit.edu@ip-172-30-1-201:~/£fall-2021-12.010$ git diff main
diff --git a/hello.py b/hello.py

new file mode 100644

index 0000000..11b15bl

-=-=- /dev/null

+++ b/hello.py

ee -0,0 +1 ee

+print("hello")

cnh@mit.edu@ip-172-30-1-201:~/£fall-2021-12.010%

12/02/21 12.010 Lec23

If we now want to update the official
repository we create a “pull request” (PR).

A PR is a way to ask the maintainer of the
official repository to incorporate your
changes (i.e. pull them into the official
repository).

Note —

This workflow can seem somewhat
complicated. It is does allow people all over
the planet to collaborate on large software.
Git does not know which is the “official”

repository. That is a choice of a project. All
repositories are peers to Git.

15

Creating a pull request

¥ christophernhill-dev / fall-2021-12.010 pubiic 0 Coversation (6) | © Commite @ 03 Checks 16) [Fies changed §
forked from christopherahilfall-2021-12.010
9 christophernhill commented now Ownec
<> Code 11 Pull requests (*) Actions [T} Projects 00 Wiki () Security |~ Insights 51 Settings .
No description provided
p o @aan
¥ chris/small-test-edit had recent pushes 3 minutes ago Compare & pull request
L] Add moce commits by pushing to the ehris/smsll it branch on chei i Mall-2021-12.010.

° This branch has no conflicts with the base branch
Merging can b pectormed automatically

Open a pull request

Creating a PR results in a N (e e e i e @ [|orwee T e aa
request belng queued at the + Able to merge. These branches can be automatically merged =
official repository. @ (e]

Write Preview HB I i & == @ g «-

Leave a comment

The maintainers of the official
repository can then review the
new code, request changes

and/or merge the PR into the o
official repo. T

12/02/21 12.010 Lec23 16

Conflicts

Two commits can potentially

contain changes to same file.

Git will try and merge if the
changes are from the same
“base” and_theyarein
different parts of the file.

Otherwise a conflict will be

detected and will need to be
resolved manually.

12/02/21

11 Pull requests 2) Actions Projects

Filters + Q isypris:iopen

11 20pen v 0 Closed

Il Add howdy

Il add hello

D wiki D Security < Insights Settings
Label issues and pull requests for new contributors
Now, GitHub will heip potential first-time contributors discover issues labeled with c

© Labels

Q ProTip!t What's not been updated in & month: updated:<2021-11-01

Add more commits by pushing to the main branch on cnh-org-test/fall-2021-12.010

This branch has conflicts that must be resolved
Use the web editor or the conflicts

Conflicting files

hello.py

Add howdy #2

Resolving conflicts between cnh-org-test:main and christophernhill:main and committing changes = cnh-org-test

1 conflicting file

<>

hello.py
hello.py

12.010 Lec23

the command

hello.py

1 |~ <<<c<ccc<c main
2 print("howdy"
3 |- p=s====

4 print("hello"
5 L >>>>>>> main
6

ine to resolve

Resolve conflicts

17

Hands on

* Try fork, clone, edit, diff, log, status, commit/add, push, pull request....

Git and Github/Gitlab streamline
collaboration and versioning.

* BUT - what about checking if a PR will break something.
* For this testing is important.

* Github/Gitlab have builtin features to help with automated testing.

* CI/CD - continuous integration/continuous deployment is a name somtimes
given to this sort of automated testing. The CI/CD name comes from online
software, where the deployment of continually evolving software to web is
automated (Facebook, twitter etc....)

Automated testing tools

* These are not part of Git, but Github/Gitlab do provide

e Github actions is a common tool for automated testing

22 GitHub Actions

Automate your workflow
from idea to production

GitHub Actions makes it easy to automate all your software
workflows, now with world-class CI/CD. Build, test, and deploy your
code right from GitHub. Make code reviews, branch management,
and issue triaging work the way you want.

Get started with Actions >

© 2025 GitHub, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Automated testing as a concept is
an important piece of maintaining
software.

This is an area where specific tools
are evolving particularly quickly.

We will look at “Github Actions” as
an example. It is widely used, but
only appeared in 2019.

20

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

Automated testing

 General idea is

* Have some tests that check things still work
* Whenever new code is added, or changed
* Regularly (nightly, weekly etc...) in case something else changes that affects code working

Automating testing is preferable where possible

Tests can be a mix of

* Unit tests
* Integration tests
* System tests

Different sets of tests may run at different frequencies

Tools like Github, Gitlab have features to help set up these processes

Github actions —automated testing example

* Add a special directory “.github/workflows” to a repository.

* Adds files in that directory that describe “actions” to take in response
to events (such as a commit or a pull request)

e The actions are scripts that can perform whatever tests make sense

e Github provides virtual machines that run the scripts when they are
triggered.

Github actions —automated testing example

¥ main ~ fall-2021-12.010 / .github / workflows / main.yml

9 christophernhill Example CI/CD step

A 1 contributor

34 lines (27 sloc) 1.05 KB

This is a basic workflow to help you get started with Action

name: CI

hi
1 build
18 # T ru t
19 ur ubuntu-latest
St
teps
(ks ur repc or
st tions/checkout@v2

name: Run a one-line script
run: echo Hello, world!

12/02/21

run

12.010 Lec23

A simple example, provided by
default.

It uses Github actions specific
syntax (based on a file format
called yaml).

23

https://en.wikipedia.org/wiki/YAML

Github actions — results

@ Example CI/CD step Cl #1

M Summary

Jobs

@ build

12/02/21

& Setupjob
@ Run actions/checkout@v2

@ Run a one-line script

v @ Runa multi-li

@ Post Run actions/checkout@v2

© Complete job

Results of actions can be used to
control whether a pull request can
be merged.

O Re-run all jobs

12.010 Lec23

24

Hands on

* Try create CI/CD action

There are other CI/CD systems

* all have a somewhat similar pattern
* they are controlled by files with specific names/in specific directories
* they have some high level syntax based on YAML/TOML

* they can invoke specific commands that are controlled by the repository
needs

* Some other examples
* Travis, buildkite, CircleCl, Gitlab

Publishing software

* Tools like Github provide a new way to “publish” software

* Not quite like a paper sharing science results, but still increasingly
useful in research for sharing ideas/techniques.

* There are some useful tools for providing citation, that allow projects
using published software to reference properly

m EENEY oo oo The Journal of Open Source Software is a developer This is becoming
friendly, open access journal for research software . . .
[oion LT packages. mcreasmgly commqn g
Committed to publishing quality research software with zero article processing charges or resea rCh commun |t|es-
Featured communities subscription fees

£ Explore Papers

© Source unknown. All rights reserved. This content is excluded from our Creative 27
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

Containers

* In addition to Github there are recent services called
“Container registries”

* These can be used with Github to record the entire
Operating system and sets of packages used by some
software

* See
https://journals.plos.org/ploscompbiol/article?id=10.1371/jo

urnal.pcbi.1008316
https://psyarxiv.com/fwxs4/

As software is more and more central to research keeping track
of what was used, testing etc... becomes more and more
important!

12/02/21 12.010 Lec23

CALL ME WEAK-MINDED FOR BELIEVING
THE WORLD SITS ON A TURTLE,

' AND THAT TURTLE IS

SITTING ON ANOTHER

TURTLE,

AND IT'S TURTLES
ALL THE WAY
DOWN,

BUT DON'T TELL ME
THE UNEXAMINED
LIFE BNT
WORTH
LIVING

AS | RIDE MY INFINITE TURTLE
FORTRESS ACROSS THE $KY.

© Source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use.

28

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008316
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008316
https://psyarxiv.com/fwxs4/
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01

29

https://ocw.mit.edu/
https://ocw.mit.edu/terms

