

12.010 Computational
Methods of Scientific

Programming 2021

Lecture 22: Version control and software management practices

12/02/21 12.010 Lec23 1

Summary

• Version control and related tools, motivation

• Using “Git” and “Github”
• status, log, add, commit, fork, clone, push, remote, branch, pull request….

• Adding automated testing
• CI/CD Note –

Some specific tools barely
existed 5 years ago! They are

• Publishing useful, but the tools here are
an area of frequent • Zenodo
development. • JOSS

http://dx.doi.org/10.3233/DS-190026 The concepts are more • Containers
durable.

12/02/21 12.010 Lec23 2

http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.3233/DS-190026
http://dx.doi.org/10.3233/DS-190026

Version control

• In software projects it is common for code to evolve through multiple
“versions” this can result in potential for confusion. Programs may
unexpectedly stop working when functions/data structures that
depend on each other get out of sync etc…

• Version control is used to
• keeping track of versions of files
• avoid confusion over what bits of code are being used to build a program or

system

12/02/21 12.010 Lec23 3

Versions of python packages on 12.010 cloud
system. About 450 packages in total, each with their

own version.

Each package is made up of multiple python
files (>60,000)

Keeping things like this all “consistent” is the
origin of version control and related tools

For software used in research these sorts of
tools are important for reproducibility,
sharing, collaboration etc…

12/02/21 12.010 Lec23 4

Modern version control/software
reproducibility “tooling”
• Git

• Git has become the standard tool for version control
• Free online services like “Github” and “Gitlab” provide a nice web interface and make Git easier to

use
• Git itself is a software tool separate from Github/Gitlab. Github/Gitlab make collaborating using

git easier.

• Continuous Integration/Continuous Deployment (CI/CD)
• Fancy name for automated testing to avoid breaking things by mistake
• Online services like Github provide ways to integrate CI/CD into version control environment

• Publishing
• Zenodo/JOSS – DOI to reference/cite/find software versions
• Containers - A system for capturing specification of a whole computer + application to help make

things portable.

12/02/21 12.010 Lec23 5

Git basics

• The best way to understand git is to use it, following some tutorial. It
makes a lot more sense in use, than on paper!

• Git organizes collections of code in “repositories”

• A repository is just a directory tree with files and some special
information in a “.git” subdirectory

12/02/21 12.010 Lec23 6

12/02/21 12.010 Lec23

A git repository
Creating a new repository by hand has a special

subdirectory
“.git” at its
“root”.
Files and
directories can
be added.
.git keeps track
of history of
“committed”
adds/deletes
and edits. 7

Add a file

12/02/21 12.010 Lec23

Files and directories can be created in
the repository directory tree.

Note:

Don’t do anything in .git

Git is designed for files of code and text
files. It does not work well with images,
binary files etc…

Here we created a file “hello.py” and
added it to the current, active files
tracked by git.

To make the change a permanent we
must “commit” changed file.

8

https://hello.py

Commit the changes

12/02/21 12.010 Lec23

In git, in addition to adding any
new files, you ”commit” changes
that you want to keep.

The sequence of commits and
changes is stored in the .git
directory so that you can compare
different versions of files,
directories of repositories.

The commit id number is unique,
so you can compare any commit
with another.

9

Working with Git via Github

• Git on its own can be a bit
fiddly to use, especially
for sharing and publishing
code and remote
collaboration. Lots of
projects use Github to
streamline workflow.

• Creating a copy of an
existing repository,
making a change and
then submitting change
back to original
repository is a good way
to start. In Github this
starts with a “fork” of the
existing repository.

12/02/21 12.010 Lec23

Fork to your own Github account.

10

After creating a “fork”, download to local
compute using “clone”.

12/02/21 12.010 Lec23 11

Now lets make a change – we do this on a
“branch”

There are lots of ways to use
Git.

A common practice is to
create a “branch” for a set of
edits.

The default branch is called
master or main, here we
create a branch with a name
to remind us what it is for.

Once we have created our file
we need to add and commit.

This records our new changes
locally, associated with the
branch.

12/02/21 12.010 Lec23 12

After we are happy with our local changes we
can “push” them to our repository fork.

We use “git push” to send
changes back to the repository
we cloned.

Here we use

git push --set-upstream origin
chris/small-test-edit

to “push” changes to our
Github repository.

12/02/21 12.010 Lec23 13

After push our online repo has changes

12/02/21 12.010 Lec23

The online repo
also has a
“Compare &
pull request “
button.

14

Current state

1. Official repository unchanged
2. Fork of official repository has a

“branch” with changes that we
made on a local machine and
“pushed” to Github.

3. Local machine has clone of our
fork. It has branch and main

12/02/21 12.010 Lec23

If we now want to update the official
repository we create a ”pull request” (PR).

A PR is a way to ask the maintainer of the
official repository to incorporate your
changes (i.e. pull them into the official
repository).

Note –

This workflow can seem somewhat
complicated. It is does allow people all over
the planet to collaborate on large software.

Git does not know which is the “official”
repository. That is a choice of a project. All
repositories are peers to Git.

15

Creating a pull request

Creating a PR results in a
request being queued at the
official repository.

The maintainers of the official
repository can then review the
new code, request changes
and/or merge the PR into the
official repo.

12/02/21 12.010 Lec23 16

Conflicts
Two commits can potentially
contain changes to same file.

Git will try and merge if the
changes are from the same
“base” _and_ they are in
different parts of the file.

Otherwise a conflict will be
detected and will need to be
resolved manually.

12/02/21 12.010 Lec23 17

Hands on

• Try fork, clone, edit, diff, log, status, commit/add, push, pull request….

12/02/21 12.010 Lec23 18

Git and Github/Gitlab streamline
collaboration and versioning.
• BUT - what about checking if a PR will break something.

• For this testing is important.

• Github/Gitlab have builtin features to help with automated testing.
• CI/CD – continuous integration/continuous deployment is a name somtimes

given to this sort of automated testing. The CI/CD name comes from online
software, where the deployment of continually evolving software to web is
automated (Facebook, twitter etc….)

12/02/21 12.010 Lec23 19

Automated testing tools

• These are not part of Git, but Github/Gitlab do provide
• Github actions is a common tool for automated testing

Automated testing as a concept is
an important piece of maintaining
software.

This is an area where specific tools
are evolving particularly quickly.

We will look at “Github Actions” as
an example. It is widely used, but
only appeared in 2019.

© 2025 GitHub, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 20

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

Automated testing

• General idea is
• Have some tests that check things still work

• Whenever new code is added, or changed
• Regularly (nightly, weekly etc…) in case something else changes that affects code working

• Automating testing is preferable where possible

• Tests can be a mix of
• Unit tests
• Integration tests
• System tests

• Different sets of tests may run at different frequencies

• Tools like Github, Gitlab have features to help set up these processes

12/02/21 12.010 Lec23 21

Github actions – automated testing example

• Add a special directory “.github/workflows” to a repository.

• Adds files in that directory that describe “actions” to take in response
to events (such as a commit or a pull request)

• The actions are scripts that can perform whatever tests make sense

• Github provides virtual machines that run the scripts when they are
triggered.

12/02/21 12.010 Lec23 22

Github actions – automated testing example

A simple example, provided by
default.

It uses Github actions specific
syntax (based on a file format
called yaml).

12/02/21 12.010 Lec23 23

https://en.wikipedia.org/wiki/YAML

Github actions – results

Results of actions can be used to
control whether a pull request can
be merged.

12/02/21 12.010 Lec23 24

Hands on

• Try create CI/CD action

12/02/21 12.010 Lec23 25

There are other CI/CD systems

• all have a somewhat similar pattern
• they are controlled by files with specific names/in specific directories
• they have some high level syntax based on YAML/TOML
• they can invoke specific commands that are controlled by the repository

needs

• Some other examples
• Travis, buildkite, CircleCI, Gitlab

12/02/21 12.010 Lec23 26

Publishing software

• Tools like Github provide a new way to “publish” software
• Not quite like a paper sharing science results, but still increasingly

useful in research for sharing ideas/techniques.
• There are some useful tools for providing citation, that allow projects

using published software to reference properly
This is becoming
increasingly common in
research communities.

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 27

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

Containers
• In addition to Github there are recent services called

“Container registries”

• These can be used with Github to record the entire
Operating system and sets of packages used by some
software

• See
https://journals.plos.org/ploscompbiol/article?id=10.1371/jo
urnal.pcbi.1008316
https://psyarxiv.com/fwxs4/

As software is more and more central to research keeping track
of what was used, testing etc… becomes more and more
important!

12/02/21 12.010 Lec23

© Source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use.

28

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008316
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008316
https://psyarxiv.com/fwxs4/
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01 29

https://ocw.mit.edu/
https://ocw.mit.edu/terms

