

12.010 Computational
Methods of Scientific

Programming 2021

Lecture 21: Parallel programming. Algorithms and scaling, MPI

Summary

• Parallel programs
• Examples
• Amdahl Law
• Gustafson Law

• Implementation in MPI
• MPI concepts and basics
• Python and MPI example
• Other tools

• Threads
• Interesting builtin Fortran parallelism!

11/30/2021 12.010 Lec22 2

Explicitly Parallel Programs

• All programs are parallel at some level
• CPU does a lot of things at once but hides from application.
• For example, in a single threaded program a CPU might execute multiple

independent instructions in parallel. This is hidden from application.

• Explicitly parallel programs
• Application is written so parallelism (multiple things potentially/actually

happening at same time) is part of the program code
• Parallelism is visible to the application and programmer.

11/30/2021 12.010 Lec22 3

Examples

• Weather forecasts.

1922 proposal (L.F. Richardson)

~64,000 human computers

© Francois Schuiten. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use.

11/30/2021

© Microsoft. All rights reserved. This content
is excluded from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/faq-fair-use.

2021 actual ~50,000 CPU cores

© OpenMapTiles. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use.

12.010 Lec22 4

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

Examples

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Atomistic modeling, protein folding, pharmaceutical binding strength, aerosol
dispersion, epidemiological modeling, genetic sequence correlation, phylogenetics,
etc…

11/30/2021 12.010 Lec22 5

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

When is parallelism useful?

• Amdahls law
• imagine program with fraction, f, that speeds up perfectly and fraction (1-f) that does

not speed up at all when running on multiple processors
• the execution time on N processors will be

��" �! =

where T1 is time on one processor

• define speedup as ratio of T1 and TN

�" � = �!
e.g. if we run on 10 processors and time to solution is one tenth, then speedup is 10.

11/30/2021 12.010 Lec22

�
+ 1 − � �"

6

How does speedup vary as parallel fraction
varies?
• Also define efficiency

�
� =

�
so that E=1 means (for example) speedup of 10 on 10 processors.

we can define efficiency, E, as a function of parallel fraction, f, for a processor
count, N

1
� =

� + � 1 − �

11/30/2021 12.010 Lec22 7

Plotting efficiency for N and f

Amdahls characterizes “strong scaling” i.e. efficiency when
problem size is held constant.
In reality, weather, molecular dynamics etc… run larger
problems on larger computers such that f increases.

11/30/2021 12.010 Lec22 8

11/30/2021 12.010 Lec22

In reality many real problems in scientific
will exhibit some combination of strong
and weak scaling.
i.e.
they are not completely fixed in size
and
they can not be sensibly grown forever

Gustafsons Law v Amdahl
Amdahls characterizes “strong scaling” i.e. efficiency when
problem size is held constant.

In reality, weather, molecular dynamics etc… run larger
problems on larger computers such that f increases. This is
called weak scaling.

Gustafsons law expresses a weak scaling speedup relation

�! = � + 1 − � � = � + 1 − � �

where s is the fraction of the program that runs serially.
In Gustafsons law speedup increases with N, because the serial
fraction becomes a smaller part of the overall work.

9

Handson

fall-2021-12.010/lec22/amdahl.ipynb

11/30/2021 12.010 Lec22 10

https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010/tree/main/lec22

Writing parallel programs with MPI

Writing an explicitly parallel program involves using extra language
syntax that expresses parallel operations.

There are multiple tools for doing this. The most common one in
scientific computing is a library called the “Message Passing Interface”
(MPI).

11/30/2021 12.010 Lec22 11

Programming with MPI

• MPI - “message passing interface” is a very popular tool for writing
parallel programs in scientific and technical computing.
• Lots of information can be found at

• https://www.mpi-forum.org/docs/
• Work on standard began in 1992.
• Three generations of standards MPI 1.2, MPI 2.0 and MPI 3.1

• MPI 1.2 very widely available
• MPI 2.0 widely available
• MPI 3.1 generally available
• MPI 4 under construction

11/30/2021 12.010 Lec22 12

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/

Role of MPI
• Supercomputing

• Most big supercomputing applications (weather/climate, materials/atomic, folding,
massive ML) use MPI
• HPC simulators often use MPI directly, or indirectly (through e.g. ScalaPack, MAGMA etc…)
• ML applications often use MPI indirectly e.g. through Horovod et….

• MPI can be used from C, C++, Fortran and from Python, Julia, Octave, Matlab and R.

• It is the dominant tool for “tightly” coupled parallel codes on clusters and in cloud settings.

• It can run on laptop, local clusters and on massive supercomputers.

• It can work with CPU and/or GPU codes.

• All the shared resources at MIT have MPI available.

• MPI basics are minimalist and relatively easy to learn. Quite a bit of work is left to
application developer to create an MPI program.

11/30/2021 12.010 Lec22 13

Basic hardware and programming model

Typical Hardware

Some communication fabric e.g.
network, shared memory etc…

CPU

CPU

CPU

P0

P1

P2

MPI Programming Model

MPI library for communicating
between independent processes.

11/30/2021 12.010 Lec22 14

Ingredients of MPI

P0

P1

P2

MPI Programming Model
MPI library for
communicating between
independent processes.

• Some way to start up multiple processors
• Some way to figure out which process is which
• Some way to send information between and amongst

processes
• Some way to synchronize between processes
• These ingredients are provided by library calls and by

a special script for starting a program. Both are
provided by MPI.

11/30/2021 12.010 Lec22 15

MPI Hello World

P0

P1

P2

MPI Programming Model
MPI library for
communicating between
independent processes.

• Some way to start up multiple processors
• MPI_Init()

• Some way to figure out which process is which
• MPI_CommRank()
• MPI_CommSize()

MPI_Init(), MPI_CommRank and MPI_CommSize are MPI library calls. Each has
online documentation.

11/30/2021 12.010 Lec22 16

MPI Hello World – “classic MPI”
Running in parallel
after this, state
before is undefined.

Each MPI process
will get a different
rank value. Ranks
are in range 0 – (Np1)

Everybody gets size
= Np

11/30/2021 12.010 Lec22 17

 Hands on

fall-2021-12.010/lec22/mpi-hello.c

fall-2021-12.010/lec22/*py

11/30/2021 12.010 Lec22 18

https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010/tree/main/lec22
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010/tree/main/lec22

Beyond Python MPI

• MPI also exists for C, C++, Fortran, Julia, R etc…

• Python Dask is an alternate for parallelism that tries to be more
integrated with Python.

• Modern Fortran (2008) is a parallel language without any extensions
using “co-arrays”.

11/30/2021 12.010 Lec22 19

 Hands on

fall-2021-12.010/lec22/*py

11/30/2021 12.010 Lec22 20

https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010/tree/main/lec22

 Hands on

fall-2021-12.010/lec22/coarray.F90

11/30/2021 12.010 Lec22 21

https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010
https://github.com/christophernhill/fall-2021-12.010/tree/main/lec22

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01 22

https://ocw.mit.edu/
https://ocw.mit.edu/terms

