

12.010 Computational
Methods of Scientific

Programming

Lecture 19: Julia

Julia programming language

• Python, Matlab high-level, interpreted, can be fast but can be very slow for
e.g. loops.

• R - great at statistics, but sloooow.

• C, C++, Fortran fast, compiled, but not very interactive, old style very pedantic
syntax.

• Julia tries to fuse good features and leave out undesirable qualities

11/26/2024 12.010 Lec 20 2

Julia relative performance
Plot shows relative performance of
some computing micro-benchmarks in
different languages.

Julia is an interpreted/JIT language but
is competitive with compiled
languages. (JIT – just in time compiled).

JIT means that we can work
interactively, but code (in functions) will
be compiled on the fly

Compiled code is cached so one time
compile overhead can be amortized.

© 2024 JuliaLang.org contributors. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.11/26/2024

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://JuliaLang.org

Julia uptake

Still much less widespread
than Python, R, Matlab

But growing

Mostly interoperable with
Python packages (via “PyCall”
and/or PyPlot – Matplotlib
optimized interface).

11/26/2024 12.010 Lec 20 4

Julia history

• Named origin ~2009 MIT, Jeff Bezanson, Alan Edelman, Stefan
Karpinski, Viral Shah.

at least 1995.
• V1.0 release 2018.
• Some interesting things

• Arrays are arrays (no numpy, lists etc..)
• Types support different style of work

• Interactive, but loops can be fast
© 2024 JuliaLang.org contributors. All rights reserved. This • Functions have some nice syntax content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use.• Strong support for mathematical ideas

11/26/2024 12.010 Lec 20

• Some heritage of numerous “parallel matlab” projects dating bak to

5

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://JuliaLang.org

Julia getting set up
© 2024 JuliaLang.org contributors. All rights • Try install in Python notebook reserved. This content is excluded from our
Creative Commons license. For more information, Julia/account_configadd_julia_kernel.ipynb see https://ocw.mit.edu/help/faq-fair-use.

• this should add

• or on laptop (download) and try “REPL”

11/26/2024 12.010 Lec 20 6

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://JuliaLang.org

Julia notebook

First command in a notebook takes a few seconds. Julia compiles everything to cache on the fly, and a lot of
Julia itself is in Julia e.g.

11/26/2024 12.010 Lec 20 7

Julia notebook

11/26/2024 12.010 Lec 20 8

Julia REPL

Running
“REPL” from
a shell.

11/26/2024 12.010 Lec 20 9

Julia REPL

Running
“REPL” from
a shell.

11/26/2024 12.010 Lec 20 10

Julia basic math is much like python, C,
Fortran etc…

Everything is typed, but types are inferred
when they can be.

11/26/2024 12.010 Lec 20 11

Julia types are very organized and central to
language

11/26/2024 12.010 Lec 20 12

Julia has a builtin package ecosystem that has >
4000 packages/modules

https://juliapackages.com

© 2025 GitHub, Inc. All rights reserved. This content is © 2024 JuliaLang.org contributors. All rights reserved. This excluded from our Creative Commons license. For more content is excluded from our Creative Commons license. For information, see https://ocw.mit.edu/help/faq-fair-use.more information, see https://ocw.mit.edu/help/faq-fair-use.

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://JuliaLang.org
https://juliapackages.com

Julia package syntax is multi-stepped

Pkg.add is a bit like conda install
in Python. Once a package is
added no need to install again.
Need to Pkg.add() before can
import with “using”.

using NAME is similar to “import”
in Python

11/26/2024 12.010 Lec 20 14

Julia basic syntax

• Some online resources
• https://juliadocs.github.io/Julia-Cheat-Sheet/
• https://juliabyexample.helpmanual.io

• Basics notebooks
• account_configadd_julia_kernel.ipynb
• Lec20_julia_basics.jl
• julia-basics.ipynb

11/26/2024 12.010 Lec 20 15

https://juliadocs.github.io/Julia-Cheat-Sheet/
https://juliadocs.github.io/Julia-Cheat-Sheet/
https://juliadocs.github.io/Julia-Cheat-Sheet/
https://juliadocs.github.io/Julia-Cheat-Sheet/
https://juliadocs.github.io/Julia-Cheat-Sheet/
https://juliadocs.github.io/Julia-Cheat-Sheet/
https://juliabyexample.helpmanual.io/
https://juliabyexample.helpmanual.io/
https://Lec20_julia_basics.jl

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01 16

https://ocw.mit.edu/
https://ocw.mit.edu/terms

