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Julia programming language 

• Python, Matlab high-level, interpreted, can be fast but can be very slow for 
e.g. loops. 

• R - great at statistics, but sloooow. 

• C, C++, Fortran fast, compiled, but not very interactive, old style very pedantic 
syntax. 

• Julia tries to fuse good features and leave out undesirable qualities 
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Julia relative performance 
Plot shows relative performance of 
some computing micro-benchmarks in 
different languages. 

Julia is an interpreted/JIT language but 
is competitive with compiled 
languages. (JIT – just in time compiled). 

JIT means that we can work 
interactively, but code (in functions) will 
be compiled on the fly 

Compiled code is cached so one time 
compile overhead can be amortized. 
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Julia uptake 

Still much less widespread 
than Python, R, Matlab 

But growing 

Mostly interoperable with 
Python packages (via “PyCall” 
and/or PyPlot – Matplotlib 
optimized interface). 
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Julia history 

• Named origin ~2009 MIT, Jeff Bezanson, Alan Edelman, Stefan 
Karpinski, Viral Shah. 

at least 1995. 
• V1.0 release 2018. 
• Some interesting things 

• Arrays are arrays (no numpy, lists etc..) 
• Types support different style of work 

• Interactive, but loops can be fast 
© 2024 JuliaLang.org contributors. All rights reserved. This • Functions have some nice syntax content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use.• Strong support for mathematical ideas 
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Julia getting set up 
© 2024 JuliaLang.org contributors. All rights • Try install in Python notebook reserved. This content is excluded from our 
Creative Commons license. For more information, Julia/account_configadd_julia_kernel.ipynb see https://ocw.mit.edu/help/faq-fair-use. 

• this should add 

• or on laptop ( download ) and try “REPL” 
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Julia notebook 

First command in a notebook takes a few seconds. Julia compiles everything to cache on the fly, and a lot of 
Julia itself is in Julia e.g. 
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Julia notebook 
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Julia REPL 

Running 
“REPL” from 
a shell. 
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Julia REPL 

Running 
“REPL” from 
a shell. 
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Julia basic math is much like python, C, 
Fortran etc… 

Everything is typed, but types are inferred 
when they can be. 
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Julia types are very organized and central to 
language 
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Julia has a builtin package ecosystem that has > 
4000 packages/modules 

https://juliapackages.com 
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Julia package syntax is multi-stepped 

Pkg.add is a bit like conda install 
in Python. Once a package is 
added no need to install again. 
Need to Pkg.add() before can 
import with “using”. 

using NAME is similar to “import” 
in Python 
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Julia basic syntax 

• Some online resources 
• https://juliadocs.github.io/Julia-Cheat-Sheet/ 
• https://juliabyexample.helpmanual.io 

• Basics notebooks 
• account_configadd_julia_kernel.ipynb 
• Lec20_julia_basics.jl 
• julia-basics.ipynb 
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