

12.010 Computational
Methods of Scientific

Programming 2021

Lecture 17: C/C++ Continued

Continuing C/C++

• Pointers
• Structures

11/14/2024 12.010 Lec18 2

C pointers

• Some of Lec17_polyarea.c is a bit clunky e.g. NMAX

• in many C codes pointers to blocks of memory are used instead of
arrays, and “indexing” is computed in code.

int a=1

int *pa

&a – address used by variable a
*(&a) – value stored at address used by a

- pa is a pointer to an integer

Memory

0x1 ……

0 1 2 3 4 memory addresses 11/14/2024 12.010 Lec18 3

C pointers

TAHMac[1559] cc Lec18_ptr.c
TAHMac[1560] a.out
Value in a == 7.000000
Memory address of a (in hexadecimal) ==
0x16cef327c
Value stored at address 0x16cef327c == 7.000000
Value in a == 3.000000
Value stored at address 0x16cef327c == 3.000000

Small test program – Lec18_ptr.c

- Shows accessing values versus addresses.

11/14/2024 12.010 Lec18 4

C pointers

• Try Lec18_ptr.c

11/14/2024 12.010 Lec18 5

C pointers with arrays
• C pointers are often used as an

alternate to multi-dimensional
arrays in scientific codes.

• Key parts are
• array is a “pointer”
• sizes are runtime values
• C library functions malloc() and

sizeof() are used
• index arithmetic is part of code
• C library function free() is used to

release memory – prevents
“memory leak”
11/14/2024 12.010 Lec18 6

C pointers with arrays

• Try Lec18_array_ptr.c – try and notice “warnings”

TAHMac[1563] cc Lec18_array_ptr.c
Lec18_array_ptr.c:29:26: warning: format specifies type 'int' but the argument has type 'unsigned long' [-Wformat]

29 | printf("Sizes %d %d\n",sizeof(*A),sizeof(A));
| ~~ ^~~~~~~~~~
| %lu

Lec18_array_ptr.c:29:37: warning: format specifies type 'int' but the argument has type 'unsigned long' [-Wformat]
29 | printf("Sizes %d %d\n",sizeof(*A),sizeof(A));

| ~~ ^~~~~~~~~
| %lu

Lec18_array_ptr.c:32:54: warning: format specifies type 'int' but the argument has type 'unsigned long' [-Wformat]
32 | if(A == NULL) {printf("Cant allocate %d bytes\n",nx*ny*sizeof(A)); exit(-1);}

| ~~ ^~~~~~~~~~~~~~~
| %lu

3 warnings generated.

11/14/2024 12.010 Lec18 7

C with structs and
typedef
• C struct and typedef are a way

to make code more modular
and very common and useful.

• Key parts are
• declare a struct and ”wrap” in

typedef
• declare a variable with the type

• access components of the type
using “.”

11/14/2024 12.010 Lec18 8

.

.

.

C pointers with structs

• Try Lec18_array_struct.c – try and make C poly area use malloc() and
struct + typedef
• Lec18_poly_area_struct_ptr.c

11/14/2024 12.010 Lec18 9

C pointers, structs and typedefs • C++ with
classes
• C++ builds on C structs, typedefs to create object oriented style.

• A C++ class based polyarea

•

With C++ can attach methods (aka functions) to new types, to C structure and typedef.
create higher-level interfaces.
poly and ppoint are like C types, but they have their
own data and methods (append(), area(), etc…)
collected all in one concept (Class).
C++ adds classes to C.

11/14/2024 12.010 Lec18 10

C++

• First main-stream “object oriented” language. Compose complex
applications from building blocks.
• Appeared around 1984 (Bjarne Stroustrup, Bell Labs)
• ANSI standard 1997
• Syntax is like C. Getting started: a few extra keywords + few new formalized

concepts.
• Book “C++ The Core Language” – O’Reilly
• Successful because you can compose applications from other peoples

building blocks. Windows etc….
• V. complex in detail, takes many years to learn everything!!

11/14/2024 12.010 Lec18 11

C++ compared to C

• C language + classes

• Class is a formal way to think about good
program design.
• Modularity, encapsulation, hierarchy,

abstraction
• A class has

• Methods (program logic)
• Data (variables)
• can be private or public

• We will look at expressing polyarea using
C++ object-oriented classes.

• Start with “ppoint” class – point in a Polygon

11/14/2024 12.010 Lec18 12

Example of defining a “class” for a polygon point in 2d.

C++ class

• C++ introduces
• class NAME{ … }
• instance of a class is called an

“object” e.g.
• ppoint ppoint1;

• class defines functions (methods) for
operating on objects of type

• class defines variables that hold the
state of an object

• in example state is the coordinates X
and Y

• methods are constructor and
destructor (NAME, ~NAME), print(),
=, + and -.

11/14/2024 12.010 Lec18 13

C++ ppoint constructor

• C++ constructors
• class NAME{ … }
• all classes have constructor and

destructor methods
• these have name that is the same as

the class NAME (~ in front for
destructor)

• can be defined in class block, or
separately prefixed by full name
NAME::NAME.

• C++ adds CLASSNAME::FNAME for
full names of functions. Keyword “this” is used to indicate the “current” object.

• Same function can have several
definitions for different argument
types (polymorphism).

11/14/2024 12.010 Lec18 14

C++ operator overloading

• Can redefine +, -, = etc… to have
different definition for different
type/class arguments.

• For polyarea we define an “=“ and a
“-” method for a ppoint object.

• These can be used when computing
the vector between two points.

11/14/2024 12.010 Lec18 15

C++ creating a polygon class

• We create a second class
“poly::”.
• This can hold a collection of

points that make up a polygon
• Calculate area
• Print coordinates
• ppoint:: instances can be added

using an “append” method
• Each instance of poly:: keeps

track of its internal storage and
size and allocates extra
memory when needed.

11/14/2024 12.010 Lec18 16

C++ polygon constructor
• poly:: class has an array of ppoint::

class instances
• the constructor (poly::poly) is invoked

when an object of type poly:: is
declared.

• the constructor uses the C++ “new”
function to allocate an array of ppoint::
instances

• the poly:: instance has its array pointer
set to the new memory and the max
elements and current element set.

• the keyword “this” is used to refer to
the current poly:: instance (e.g. poly1
in main()).

11/14/2024 12.010 Lec18 17

C++ polygon poly::print()

• Each poly:: instance has a
print() method
• The poly::print() method calls

the ppoint::print() method for
each ppoint:: in the parr array of
polygon points.

11/14/2024 12.010 Lec18 18

C++ polygon poly::area

• Area computation
• uses cross-product formula
• the “-” sign is overloaded for

ppoint.

11/14/2024 12.010 Lec18 19

C++ polygon poly::append

• poly::append hides a couple of
details
• Appending
• Growing the storage process

11/14/2024 12.010 Lec18 20

C++ polyarea example
• Look at and try “Lec18_poly_area.cc” (use c++/g++ compiler).

TAHMac[1583] cc Lec18_poly_area.cc
Undefined symbols for architecture arm64:

"std::terminate()", referenced from:
___clang_call_terminate in Lec18_poly_area-32e891.o

"operator delete[](void*)", referenced from:
poly::poly() in Lec18_poly_area-32e891.o
poly::append(ppoint) in Lec18_poly_area-32e891.o

"operator delete(void*)", referenced from:
poly::append(ppoint) in Lec18_poly_area-32e891.o
poly::append(ppoint) in Lec18_poly_area-32e891.o

"operator new[](unsigned long)", referenced from:
poly::poly() in Lec18_poly_area-32e891.o
poly::append(ppoint) in Lec18_poly_area-32e891.o

"___cxa_begin_catch", referenced from:
___clang_call_terminate in Lec18_poly_area-32e891.o

"___gxx_personality_v0", referenced from:
/private/var/folders/t8/r6ksvxyc8xj78r0059bkhsm00000gr/T/Lec18_poly_area-32e891.o

ld: symbol(s) not found for architecture arm64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

11/14/2024 12.010 Lec18

Correct compiler.
TAHMac[1581] c++ Lec18_poly_area.cc
TAHMac[1582] a.out
(0.000000,0.000000)
(2.000000,0.000000)
(2.000000,2.000000)
(0.000000,2.000000)
(0.000000,0.000000)
Poly area = 4.000000

21

https://Lec18_poly_area.cc
https://Lec18_poly_area.cc
https://Lec18_poly_area.cc

Summary

• Looked at pointers and structures
• Next class; inheritance and classes in Python.

11/14/2024 12.010 Lec18 22

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01 23

https://ocw.mit.edu/
https://ocw.mit.edu/terms

