12.010 Computational
Methods of Scientific
Programming 2021

Lecture 17: C/C++ Continued

Continuing C/C++

* Pointers

e Structures

C pointers

 Some of Lecl17_polyarea.c is a bit clunky e.g. NMAX

int read_nodes(double n_xy[2] [NMAX], int nmax){

* in many C codes pointers to blocks of memory are used instead of

(“: 1 ” 1 #1nclude <stdio.h>
arrays, and “indexing” is computed in code. e ot ar xargvi]){
int a=1;
int a=1 &a — address used by variable a ;th*gz’:
*(&a) — value stored at address used by a printf("%p\n", pa);
L . . . printf("%d\n", *xpa);
int *pa - pais a pointer to an integer B (AN % (&))

printf("%p\n",&a);

Memory : . r : :
—_ (base) chriss—MacBook-Pro:Downloads chrishill$ gcc ptr.c
(base) chriss—-MacBook-Pro:Downloads chrishill$./a.out
ox1!| ... ox7ffee531893c
1
1
Ox7ffeeb531893c 3

11/14/2024 0 1 2 3 4memoryaddtessey’

tinc lude <stdio.h>
int main() {

. float a; /* Floating point number %/
C po I nte rS float *ptr_to_a; /* Pointer to a floating point number x/
a =1 /* Write 7. to memory location associated with a */

printf("Value in a == %f\n",a);

TAHMac[1559] cc Lec18 ptr.c ptr_to_a = &a; /% Get'the address of the memory location where %/
- /* assignments to a get written. */

TAHMac[1560] a.out printf("Memory address of a (in hexadecimal) == %p\n",ptr_to_a);

Value in a == 7'000000_ . /* Now use pointer to read value stored at an address */

Memory address of a (|n hexadeumal) == printf("Value stored at address %p == %f\n",ptr_to_a,*ptr_to_a);

Ox16cef327c /* Write a new value to an address in memory */

Value stored at address Ox16cef327c == 7.000000 xptr_to_a = 3.;

Value in a == 3.000000

/x What value does a have now? x/

Value stored at address Ox16cef327c == 3.000000 printf("value in a == %f\n",a);
/* In C arrays and pointers are the same thing! x/
/* [0] is ptr_to_a + offset of 0x4 bytes %/
Sma” test program — Lec18 ptrc /* [1] is ptr_to_a + offset of 1x4 bytes %/
- ’ [R20tCrwaisia %/

printf("Value stored at address %p == %f\n",ptr_to_a,ptr_to_al@]);

- Shows accessing values versus addresses.

11/14/2024 12.010 Lec18 4

C pointers

* Try Lec18_ptr.c

. . int main(int argc, char xargv[]) {
C O I nte rS Wlth a rra S /* Very common to use pointers instead of multi-dimensional a1
F:) \y/ /* in many large C projects this is quite a common approach f¢
double *A;
int nx, ny;

* C pointers are often used as an

VE:
alternate to multi-dimensional Now we use the standard library functions malloc() and sizeof
. . . . malloc - requests a block of contiguous memory from the opera
arrays in scientific codes. sizeof - returns the size (in bytes) of a type, so that nxkny
return memory needed for nxxny doubles (xA).
*/

printf("Allocating memory for double array of size %d x %d\n",
A = (double x)malloc(nxxnyxsizeof(xA));

* Key parts are
e arrayis a “pointer”

. . for (int j=0;j<ny;++3j){

* sizes are runtime values for (int i=;i<nx;++i){

. . Alnx*j + il=ixj;
e Clibrary functions malloc() and 2
sizeof() are used

* index arithmetic is part of code
/* free() - releases the memory back

e Clibrary function free() is used to free(a);
release memory — prevents

“memory leak”
11/14/2024 12.010 Lec18

C pointers with arrays

* Try Lec18 array_ptr.c — try and notice “warnings”

TAHMac[1563] cc Lec18_array_ptr.c

Lec18_array_ptr.c:29:26: warning: format specifies type 'int' but the argument has type 'unsigned long' [-Wformat]
29 | printf("Sizes %d %d\n",sizeof(*A),sizeof(A));

| ~ Arvrrrnnnnny

| %lu

Lec18_array_ptr.c:29:37: warning: format specifies type 'int' but the argument has type 'unsigned long' [-Wformat]
29 | printf("Sizes %d %d\n",sizeof(*A),sizeof(A));

| ~ Arvrrrsnnnns

| %lu

Lec18 array_ptr.c:32:54: warning: format specifies type 'int' but the argument has type 'unsigned long' [-Wformat]
32| if(A== NULL) {printf("Cant allocate %d bytes\n",nx*ny*sizeof(A)); exit(-1);}
| ~ Nvrvrnvrsnrnnnnnsnnnn
| %lu
3 warnings generated.

C with structs and
typedef

e Cstruct and typedef are a way
to make code more modular
and very common and useful.

* Key parts are

* declare a struct and "wrap” in
typedef

* declare a variable with the type

* access components of the type

awyn

using “

11/14/2024

/* A tfinal important C feature 1s "typedef" and "struct"

/* this allows custom types that can gather related information in
/* variable.

typedef struct {double xarr;

int NX;
int NY;
} arr2d;
arr2d A;
A.NX = atoi(argv([1]);
A.NY = atoi(argv[2]);
f(ANX <1 || ALNY <1) {
printf("ERROR\n");
exit(-1);
}

printf("Allocating memory for double array of size %d x %d\n",A.NX,A.NY);
A.arr = (double *)malloc(A.NX*A.NYxsizeof(*A.arr));

12.010 Lec18 8

C pointers with structs

* Try Lec18_array_struct.c — try and make C poly area use malloc() and
struct + typedef

* Lec18 poly area_ struct ptr.c

C pointers, structs and typedefs =» C++ with
classes

e C++ builds on C structs, typedefs to create object oriented style.
e A C++ class based polyarea

1Nt main(int argc, char xargvll)i

/* Pointer and struct approach x/ poly polyl;
typedef struct {double xnarr; polyl.append(ppoint(@.,0.));
int nnodes; polyl.append(ppoint(2.,0.));
9 polyl.append(ppoint(2.,2.));
} n_xy; polyl.append(ppoint(©.,2.));
polyl.append(ppoint(©.,0.));
/* Function prototypes */ polyl.print();)
printf("Poly area = %f\n",polyl.area());
n_xy *read_nodes();)

With C++ can attach methods (aka functions) to new types, to
create higher-level interfaces.

poly and ppoint are like C types, but they have their
own data and methods (append (), area (), etc..)
collected all in one concept (Class).

C++ adds classes to C.
11/14/2024 12.010 Lec18 10

C structure and typedef.

C++

* First main-stream “object oriented” language. Compose complex
applications from building blocks.

* Appeared around 1984 (Bjarne Stroustrup, Bell Labs)
* ANSI standard 1997

» Syntax is like C. Getting started: a few extra keywords + few new formalized
concepts.

* Book “C++ The Core Language” — O’Reilly

 Successful because you can compose applications from other peoples
building blocks. Windows etc....

* V. complex in detail, takes many years to learn everything!!

C++ compared to C

/* First lets define a polygon point "class". x/

e Clanguage + classes class ppoint{
« Class is a formal way to think about good p“‘;é;;t(.
program design. ppoint(double, double);
e Modularity, encapsulation, hierarchy, ~ppoint(){};
abstraction ppoint operator=(ppoint);
ppoint operator+(ppoint);
* Aclass has ppoint operator—-(ppoint);
* Methods (program logic) void print();
.) private:
Data (variables) double X:
* can be private or public double Y;

friend class poly;

We will look at expressing polyarea using }s

C++ object-oriented classes.
Start with “ppoint” class — point in a Polygon Example of defining a “class” for a polygon point in 2d.

11/14/2024 12.010 Lec18 12

C++ class

/* First lets define a polygon point "class". x/

e C++ introduces class ppoint{
e« class NAME{ .. } p“bli?‘t(){}
. . ppoin ;
. llrmstancs of a class is called an ppoint(double, double):
object” e.g. ~ppoint(){};
* ppoint ppointl; ppoint operator=(ppoint);
* class defines functions (methods) for gggigi 252;%81*2222128
operatlng on obJ_ects of type void print();
 class defines variables that hold the private:
state of an object double X;
* in example state is the coordinates X BOURLE: |
and Y friend class poly;

* methods are constructor and
destructor (NAME, “NAME), print(),
=, +and -.

11/14/2024 12.010 Lec18 13

C++ ppoint constructor

/* First lets define a polygon point "class". x/
class ppoint{

e C++ constructors ”""s;;;t(){}.
* class NAME{ .. } ppoint(double, double);

* all classes have constructor and ~ppoint (){};

destructor methods
* these have name that is the same as

the class NAME (~ in front for ppoint: :ppointc(double xi, double yi)
destructor) C The2X = X
« can be defined in class block, or y SRlSraY = Y
separately prefixed by full name
NAME::NAME.
e C++ adds CLASSNAME::FNAME for
full names of functions. Keyword “this” is used to indicate the “current” object.

e Same function can have several
definitions for different argument
types (polymorphism).

11/14/2024 12.010 Lec18 14

C++ operator overloading eoint spoint: operstor= (ppoint pp2
{
X =pp2.X; Y = pp2.Y;
return(xthis);

e Can redefine +, -, = etc... to have }
different definition for different
type/class arguments. ppoint ppoint::operator- (ppoint pp2)

{ ppoint temp;
temp.X = X — pp2.X; temp.Y =Y - pp2.Y;

i “_u return(temp);
* For polyarea we define an “=“ and a }
“-” method for a ppoint object.
ppoint v;
* These can be used when computing s DOOINETEL L) = prolnt B BL)

the vector between two points.

11/14/2024 12.010 Lec18 15

C++ creating a polygon class

* We create a second class class poly{
«“) public:
poly::”. poly();
* This can hold a collection of void append(ppoint);
) mak | n void print();
points that make up a polygo Sl ores (s
* Print coordinates int ncur;
. . int nnodes_max;
e ppoint:: instances can be added orivate:
using an “append” method static const int nblk=10;

* Each instance of poly:: keeps

track of its internal storage and
size and allocates extra
memory when needed.

11/14/2024 12.010 Lec18

C++ polygon constructor

poly::poly()1

* poly:: class has an array of ppoint:: this->parr = new ppoint[this—>nblk];
class instances this->nnodes_max = this->nblk;
this->ncur=0;

* the constructor (poly::poly) is invoked }
when an object of type poly:: is — —
declared.

* the constructor uses the C++ “new” B ol
function to allocate an array of ppoint:: - e
instances

* the poly:: instance has its array pointer
set to the new memory and the max
elements and current element set.

* the keyword “this” is used to refer to

the current poly:: instance (e.g. polyl
in main()).

C++ polygon poly::print()

* Each poly:: instance hasa
print () method

* Thepoly::print () method calls
the ppoint: :print () method for
each ppoint: : inthe parrarray of
polygon points.

int main(int argc, char xargv[]1){
poly polyl;
polyl.print();

11/14/2024 12.010 Lec18

Lclass poly{

public: o
ppoint xparr;
void print();

void poly::print()

{

for (int 1=0;i<this->ncur;++1i){

this->parr[i].print();

/.

void ppoint::print()

{
}

printf (™ %E", X):
printt (Y REIAn®, Y);

18

C++ polygon poly::area

double poly::areal()

. %
* Area computation
* uses cross-product formula
* the “-” sign is overloaded for
ppoint.
}

double pa=0.;

double tvec[2][2];

ppoint v1, v2;

for (int i=2;i<this->ncur;++i){

vl=this->parr[i-1]-this->parr[0];
v2=this->parr[i]-this->parr[0];

pa=pa+(vl.X*v2.Y-v1.Y*v2.X)%0.5;
}

return pa;

ppoint ppoint::operator— (ppoint pp2)

{ ppoint temp;
temp.X = X - pp2.X; temp.Y =Y - pp2.Y;
return(temp);

}

11/14/2024 12.010 Lec18

19

C++ polygon poly::append

void poly::append(ppoint pa){
int nc=this->ncur;

 poly::append hides a couple of

details int nm=this->nnodes_max;
] if (nc == nm) {
* Appending int nmnew=nm+this—>nblk;
« Growing the storage process ppoint *parrnew = new ppoint[nmnew];

for (int i=0;i<nc;++1i){
parrnew[il]=this->parr[i];
}
delete this->parr;
this->parr=parrnew;
}
this->parr[ncl=pa;
++this->ncur;

11/14/2024 12.010 Lec18 20

C++ polyarea example

* Look at and try “Lec18 poly area.cc” (use c++/g++ compiler).

TAHMac[1583] cc Lec18 poly area.cc
Undefined symbols for architecture arm64:
"std::terminate()", referenced from:
___clang_call_terminate in Lec18 poly area-32e891.0

"operator delete[](void*)", referenced from: Correct compller.
poly::poly() in Lec18_poly_area-32e891.0 TAHMac[1581] c++ Lec18_poly_area.cc
poly::append(ppoint) in Lec18 poly_area-32e891.0 TAHMac[1582] a.out

n R EAW .

operator deIete(v0|'d) ., referenced from: 0.000000,0.000000
poly::append(ppoint) in Lec18_poly area-32e891.0

poly::append(ppoint) in Lec18_poly area-32e891.0 2.000000,0.000000

()
()
"operator new[](unsigned long)", referenced from: (2.000000,2.000000)
()
()

poly::poly() in Lec18_poly_area-32e891.0 0.000000,2.000000
poly::append(ppoint) in Lec18_poly area-32e891.0

. " , 0.000000,0.000000
____cxa_begin_catch", referenced from:
___clang_call_terminate in Lec18 poly_area-32e891.0 Poly area = 4.000000
" gxx_personality_v0", referenced from:
/private/var/folders/t8/r6ksvxyc8xj78r0059bkhsm00000gr/T/Lec18_poly_area-32e891.0
Id: symbol(s) not found for architecture arm64
clang: error: linker command failed with exit code 1 (use -v to see invocation)

https://Lec18_poly_area.cc
https://Lec18_poly_area.cc
https://Lec18_poly_area.cc

summary

* Looked at pointers and structures

* Next class; inheritance and classes in Python.

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01

23

https://ocw.mit.edu/
https://ocw.mit.edu/terms

