
12.010 Computational 
Methods of Scientific 

Programming

Lecture 14: Compiled languages



Summary

• Start compiled languages:
• Getting compilers (Fortran/C)
• How they work (compile/link/run)

• Goal is to give some basic familiarity and see how key foundational 
concepts (loops, conditionals, functions, data structures, I/O) look 
and behave.
• Fully learning each language in detail takes time and practice. 

10/31/2024 12.010 Compiled languages 2



Compiled languages:
• Is it worth learning more than Python?

• Great question! 
• Python is getting remarkably capable e.g.

• https://veros.readthedocs.io/en/latest/
• Global ocean model  (https://dionhaefner.github.io/2021/04/higher-level-geophysical-modelling/ ) 

all in Python, uses various packages (NUMBA, JAX) to allow 
• NUMBA provides JIT (just in time) compilation for Python, which can make it perform well.
• JAX provides a plugin for GPUs 

• In principle could just work in Python
• Lots of existing tools in Fortran, C, C++

• Exoplanets, seismic, fluids, ML, materials, econ etc…
• Knowing some can help make sense of these tools

• Also - Learning a little about other languages can help thinking overall, enhance 
understanding of concepts versus “implementation”.

10/31/2024 12.010 Compiled languages 3

https://veros.readthedocs.io/en/latest/
https://veros.readthedocs.io/en/latest/
https://dionhaefner.github.io/2021/04/higher-level-geophysical-modelling/
https://dionhaefner.github.io/2021/04/higher-level-geophysical-modelling/
https://dionhaefner.github.io/2021/04/higher-level-geophysical-modelling/
https://dionhaefner.github.io/2021/04/higher-level-geophysical-modelling/
https://dionhaefner.github.io/2021/04/higher-level-geophysical-modelling/
https://dionhaefner.github.io/2021/04/higher-level-geophysical-modelling/
https://dionhaefner.github.io/2021/04/higher-level-geophysical-modelling/


Compiled languages:
• What does “compiled language” mean

• Using a compiled language means
1. Code (C, Fortran, Java, C++) is written to a file (or files) in a human readable 

form
2. The file(s) of code are processed by a special program, called a compiler.
3. The compiler produces a separate file of output, called an executable.
4. The executable is a program that can be run to perform the steps written  in 

the original program

cc1 as ld

1. Write code 2. Compile code 4. Execute

10/31/2024 12.010 Compiled languages 4



Compiled languages:
1. Writing code

• uses a programming oriented editor e.g. vs-code, vi, emacs, nano, nedit etc….

2. Compile and link code
• “compiles” one or more files into “object” code

• foo.c è foo.o, bar.c è bar.o
• “links” .o files to create executable (default name a.out ?)

• *.o è a.out

cc1 as ld

1. Write code 2. Compile code 4. Execute

10/31/2024 12.010 Compiled languages 5



Compiled languages v. interpreted - I
• What are some differences between compiled and 

notebook/Python (i.e., interpreted languages). 
• Compiled code can be shared as a single binary file (for particular CPU + 

OS) and will execute.
• Interpreted code requires an “interpreter” program (e.g., Python)

• Developing with compiled code is generally more “pedantic”. Compiled 
languages quite often have more syntax rules, and the workflow is less 
interactive (harder to see what is going on, debugging requires more 
planning). 

• Compiled code can often produce faster, more efficient and smaller 
programs (not guaranteed!)

10/31/2024 12.010 Compiled languages 6



Compiled languages and uses 
• Top 20 languages 

(https://www.tiobe.com/tiobe-index/ ) 
for 2021 has eleven compiled and nine 
interpreted
• C(2), Java(4), C++(3), C#(5), VB(7), AS(10), 

Go(11), Swift(15), Fortran(16), Pascal(?)
• Python(1), Javascript(6), SQL(9), PHP(8), 

MATLAB(14), R(17), Ruby(19), Perl(?)
• Compiled used for e.g.

• Operating system, Weather forecast 
models, planetary, stellar, geophysics, astro, 
mech, particle, real-time control etc…

• Interpreted also used, and growing
• Line between compiled v. interpreted 

can be blurred
• Can get interpreters for compiled langs
• Can “compile” interpreted langs!

© 2025 Tiobe Software BV. All rights reserved. This content  
Is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use


Compiled languages v. interpreted - II
• Quite a few languages are a bit of both – compiled v interpreted 

workflow is different, but language can be the same

• For example, Matlab has a compiler that can be used to generate 
executables that can be run on systems without Matlab installed.

• Fortran and C can be written in a Notebook

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels10/31/2024 12.010 Compiled languages 8

© 1994-2025 The MathWorks, Inc. All rights reserved. This 
content is excluded from our Creative Commons license. For 
more information, see https://ocw.mit.edu/help/faq-fair-use.

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use


We will focus on compiled languages that are 
commonly used in science
• Fortran, C, C++
• Some common compiled language aspects

• Much more use of explicit “types”
• More fiddly syntax
• Edit, compile, run workflow is similar

• make and build tools etc….

• Some differences between Fortran, C, C++
• Syntax is different, although concepts (loops, functions, conditionals) the same
• Fortran has a numerical/scientific feel builtin (for example native multi-dimensional 

arrays)
• C, C++ are a little more general computing oriented (pointers, memory management 

etc…)

10/31/2024 12.010 Compiled languages 9



Getting started with C

• Quick look at basics of language

• compiler, make tools etc…

• Try compiling, running, modifying some examples

10/31/2024 12.010 Compiled languages 10



Getting started with C

• C programming language originally designed in late 
1960s, early 1970s.
• first popularized as “Kernighan and Ritchie” (K&R) C in 1978. 

Part of UNIX OS, 
• much of UNIX (and subsequently Linux, Windows, MacOS etc..) 

in C
• 1989 introduced ANSI C, a more official standard ( with 

standards board etc..). 
• Latest is C17 (around 2017)
• C is very portable, and very widely used. Almost every flavor of 

hardware has a C compiler. 
• Not all hardware supports all features 
• Features beyond basic library are in a standard library  

(https://en.wikipedia.org/wiki/C_standard_library ).

10/31/2024 12.010 Compiled languages 11

© 1996–2025 Pearson. All rights reserved. This content is 
excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use.

https://en.wikipedia.org/wiki/C_standard_library
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use


Getting started with C
A simple C program.

“Included” header files - cpp

All programs start from the main() 
function.

Executable statements always end in “;”

Comments  /* .. */ or //

stdout, M_PI are from “header”  

All functions (including main() ) can 
return some result 

printf(…), fprintf(…) are function calls 
(for I/O) from standard library.

10/31/2024 12.010 Compiled languages 12



Getting started with C

Everything in C 
needs to 
“typed”

Key primitive 
types
int, float, 
double, char, * 
(pointer type). 

10/31/2024 12.010 Compiled languages 13



Getting started with C
• Generally compiled languages are “fussier” over syntax.

Compiler gives error, 
because I didn’t declare the 
variable “i” to be an integer.

Compiler gives error, 
because I forgot a “;” at the 
end of the line.

• The more exacting syntax rules can make writing code more awkward, 
but they help the compiler generate optimized code. 

10/31/2024 12.010 Compiled languages 14



Getting started with C
• Conditionals in C

== is used to test for equality.

= is used for assignment. It 
returns the value assigned – so 
can be false (==0) or true (==1) 
depending on assigned value. 

If statement syntax is

if ( condition ) {
   expression;
} else {
   expression;
}

else part is optional.10/31/2024 12.010 Compiled languages 15



Getting started with C
• Loops in C

Python – loops indented.

C syntax

for ( start; test; iteration_update ) {
   expression;
}

10/31/2024 12.010 Compiled languages 16



Getting started with C
• Arrays in C

Arrays in C – simple way with [] 
notation.

Array sizes in simple way need 
to be set at “compile” time. 

Arrays can be multi-
dimensional.

10/31/2024 12.010 Compiled languages 17



Getting started with C
• Arrays in C are pointers

Arrays in C are one example of 
“pointers”

Pointers are often used in C 
and can be a bit mysterious to 
start. 

In essence they are a “pointer” 
to some block of memory. 

10/31/2024 12.010 Compiled languages 18



Getting started with C

• Hands on 
Lec13-c-basic-hello.ipynb
But need C Kernel installed for this to run (and maybe only possible on Unix and Mac)

• When this code is loaded (at least in vscode) there should be a prompt to 
install the C/C++ extension pack.
• For Macs:
xcode-select --install
(invokes getting the command line)
https://github.com/fxcoudert/gfortran-for-macOS/releases
(Then use gcc).
• Run in athena.dialup.mit.edu (needs two-factor authentication).

10/31/2024 12.010 Compiled languages 19

https://github.com/fxcoudert/gfortran-for-macOS/releases
https://github.com/fxcoudert/gfortran-for-macOS/releases
https://github.com/fxcoudert/gfortran-for-macOS/releases
https://github.com/fxcoudert/gfortran-for-macOS/releases
https://github.com/fxcoudert/gfortran-for-macOS/releases


09/05/2024 12.010 Lec 01 20

MIT OpenCourseWare 
https://ocw.mit.edu 

12.010 Computational Methods of Scientific Programming, Fall 2024 

For more information about citing these materials or our Terms of Use, 
visit https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

