

12.010 Computational
Methods of Scientific

Programming

Lecture 13: Outputting and formatting results.

Summary

• Output results: formatting, table structures, outputting for papers
and reports.
• Formatting in Python output

• Styles of syntax: f and % versions
• Number formats
• Special characters (tabs, vt100 escape sequences)

• Panda data frame formatting options
• Formatting in Notebooks
• Writing output to files (for use in other applications).

11/29/2024 12.010 Lec12 2

str.format methods

• Under the str class, there is a very flexible str.format method that allows
control over how results are output.
• The grammar for a replacement field is as follows:
• replacement_field ::= "{" [field_name] ["!" conversion] [":" format_spec] "}"

field_name ::= arg_name ("." attribute_name | "[" element_index "]")*
arg_name ::= [identifier | digit+]
attribute_name ::= identifier
element_index ::= digit+ | index_string
index_string ::= <any source character except "]"> + conversion ::= "r" | "s" | "a"
format_spec ::= <described in the next section>

11/29/2024 12.010 Lec12 3

https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html

Replacement field*

• Contained in {} and can be arguments (starting at zero) from a
sequence or object names
• The conversion entry is optional but can be:

• !s – str() method
• !r – repr() method: Return a string containing a printable representation of an

object; may be passed to eval(). (__repr__ method can be included in class to
control how this is done (more on classes later).

• !a – ascii() method: return a string containing a printable representation of an
object, but escape the non-ASCII characters in the string using \x, \u or \U

11/29/2024 12.010 Lec12 4

Format Specification

• The general form of a standard format specifier is:
• format_spec ::=

[[fill]align][sign][#][0][width][grouping_option][.precision][type]

fill ::= <any character>
align ::= "<" | ">" | "=" | "^" – alignment ^ is centered in field
sign ::= "+" | "-" | " " – sets how +- are displayed
width ::= digit+
grouping_option ::= "_" | "," -- sets thousand separator.
precision ::= digit+
type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" |
"x" | "X" | "%"

11/29/2024 12.010 Lec12 5

https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html

Type options*
• Integer types

Type Meaning

'b' Binary format. Outputs the number in base 2.

'c' Character. Converts the integer to the corresponding unicode character before printing.

'd' Decimal Integer. Outputs the number in base 10.

'o' Octal format. Outputs the number in base 8.

'x' Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.

Hex format. Outputs the number in base 16, using upper-case letters for the digits above 9. In 'X'
case '#' is specified, the prefix '0x' will be upper-cased to '0X' as well.

Number. This is the same as 'd', except that it uses the current locale setting to insert the appropriate 'n'
number separator characters.

None The same as 'd'.
11/29/2024 12.010 Lec12 6

Older C-like methods

• Use of print with %<format> options with % and tupple with
arguments to be printed.
• This is an older method but still usable (not deprecated yet).
• Example in the notebook and we have used this in other codes.

11/29/2024 12.010 Lec12 7

Control characters*

• Control characters can be added to print formats as well
• Main codes:

• \n new-line (not needed unless end=‘’ used
• \r return (no newline – see notebook for one way to use.
• \t tab (useful if writing tables to be converted to a table in Word)
• \\ To output \

11/29/2024 12.010 Lec12 8

IO to file*

• File can be opened with open
wf = open('word.txt','w’)
• Then:

• wf.read(size) – reads size characters from the file. Reads whole file if size is
negative or not given. File read into string

• wf.readline – reads next line in file
• wf.write(str) – writes line to file. (Same constructs as print).
• wf.close() – closes file and writes remaining part of file to ‘disk’

11/29/2024 12.010 Lec12 9

--

tabulate

• Needs:
conda install tabulate
package | build

---------------------------|-----------------

conda-4.10.3 | py38hecd8cb5_0 2.9 MB

tabulate-0.8.9 | py38hecd8cb5_0 40 KB

Total: 2.9 MB

11/29/2024 12.010 Lec12 10

Markdown formatting.

• Material from https://www.markdownguide.org/basic-syntax/
• Headings (space after #..# needed)
• Alternative for h1 and h2 add ===== or ----- below line

Markdown HTML

Heading level 1 <h1>Heading level 1</h1> Heading level 1

2

3

4

5

6

Heading level 2 <h2>Heading level 2</h2> Heading level

Heading level 3 <h3>Heading level 3</h3> Heading level

Heading level 4 <h4>Heading level 4</h4> Heading level

Heading level 5 <h5>Heading level 5</h5> Heading level

Heading level 6 <h6>Heading level 6</h6> Heading level

11/29/2024 12.010 Lec12

Rendered Output

11

https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/basic-syntax/

Paragraphs/Lines/Emphasis

• Add blank line between blocks of text.
• To get line break (lines by default are concatenated together to span

the width of the notebook), add 2 or more spaces at the ends of line
or use
.
• Bold uses **text** or __text__
• Italics uses *text* or _text_
• Bold Italics uses ***text*** or ___text___
• When no spaces _ acts differently to *

11/29/2024 12.010 Lec12 12

Blockquotes/Lists

• Use > in start of lines for block quote
• Ends with new paragraph unless the blank line between paragraphs

starts with > as well.
• Use >> to indent nested blockquotes.
• Lists: Just need to start with numeric value (with decimal point), list

will increment no matter what values are used.
• If decimal point is needed one a first entry, ‘escape’ it with \ i.e., \.
• Indent 4-spaces in list with create paragraph indented but with no

leading bullet.

11/29/2024 12.010 Lec12 13

Code blocks

• Sometimes you don't want fancy formatting and just want to show
simple text or code. Indenting by 4-spaces of \<tab> will do this.
• (HW01 solution used a raw block to this but the methods below allow

other formatted text to be added.
• 4-spaces or tab at start of new paragraph created code block.
• Enhanced method is to used ~~~ to start and end blocks.
• Syntax can be recognized by added language name after ~~~ e.g.,

~~~python. 

11/29/2024 12.010 Lec12 14 



  

   

          
       

Imbed images and URLs 

• Syntax for images is: 
![label] (image file name) 
• Many implementations don’t allow image size change, in which case 

html code can be used. (See notebook). 

11/29/2024 12.010 Lec12 15 



             
     

       

Tables 

• Basic syntax is to use --- and | to show where rules should go. 
• :--, --: and :--: set left, right and center justifications. 
• Table can also be created with html syntax. 

11/29/2024 12.010 Lec12 16 



  

        
            

          
  

	 	

Latex in Markdown 

• Latex equation syntax can be used in Markdown 
• In notebook: editing seems to need cell to be changed to code and 

then Markdown so that equations will be rendered after editing. 
• These equations can often be imported directly into Word Equations 

as well e.g. 

! ∇� ⋅ ∇�~�� = 
! 

!�� ~�� 
! 

11/29/2024 12.010 Lec12 17 



           
        

          
       

          

Summary 

• Formatting is very flexible but can be confusing with the different 
options for doing the same thing. Methods also change with 
releases. 
• Learning number and table formatting can be useful when preparing 

tables for inclusion in Word and LaTeX documents. 
• Markdown language can be used when Notebooks are distributed to 

other 

11/29/2024 12.010 Lec12 18 



 

  
 

      

            
 

MIT OpenCourseWare 
https://ocw.mit.edu 

12.010 Computational Methods of Scientific Programming, Fall 2024 

For more information about citing these materials or our Terms of Use, 
visit https://ocw.mit.edu/terms. 

09/05/2024 12.010 Lec 01 19 

https://ocw.mit.edu/
https://ocw.mit.edu/terms

