

12.010 Computational
Methods of Scientific

Programming 2021

Lecture 7: ODE solutions

Summary

• Ordinary differential equation (ODE) solutions:
• Methods from scipy
• Methods from scratch.

10/01/2024 12.010 Lec08 ODE 2

ODE solvers

• ODE solvers like odeint() are powerful for solving all sorts of differential
equations involving gradients with respect to a single variable.
• Interesting examples include

• Lorenz equations – a toy model for thinking about atmospheric predictability
• Lotka-Volterra equations – a toy model for thinking about predator-prey cycles in

ecosystems
• Ballistic equations – the trajectory of golf ball or rocket

• We can solve these systems ourselves using simple methods (e.g., Euler
forward), but in general, an ODE solver will have smart techniques to
automatically preserve accuracy as well as it can.

10/01/2024 12.010 Lec08 ODE 3

ODE solvers – DIY approach

• To illustrate ODE solver concept we first code a simple solver explicitly
by hand for the Lorenz63 equations

This set of equations was devised by Ed Lorenz
(https://en.wikipedia.org/wiki/Edward_Norton_Lorenz) at
MIT in the 1960s, with computational help from Ellen Fetter
(https://en.wikipedia.org/wiki/Ellen_Fetter).

The equations were devised as a simple model for reasoning
about chaotic phenomena in atmospheric dynamics.

three state variables x, y and z that vary in time t with parameters rho, sigma and beta being used to
explore model behavior.

10/01/2024 12.010 Lec08 ODE 4

https://en.wikipedia.org/wiki/Edward_Norton_Lorenz
https://en.wikipedia.org/wiki/Ellen_Fetter

ODE solvers – DIY approach
• We can define

a simple
function for
L63 equations
• Note use of

docstring as
a reminder
for our future
selves!

10/01/2024 12.010 Lec08 ODE 5

 	

ODE solvers – DIY approach
• Now lets define a

loop that can
timestep forward
the equations using
an “Euler forward”
scheme

Here � is a vector of
L63 model state
[x,y,z], and � �! is
our lorenz63()
function.

10/01/2024 12.010 Lec08 ODE 6

The superscript n denotes discrete time-levels, separated by
time-step ∆�.
The loop computes time series of values for x,y and z.

12.010 Lec08 ODE

ODE solvers – DIY approach

7

• From the time
series of values of x,
y,z we can plot the
solution

• Note – for some
reason there is no
plt.scatter3D()
function, so we
have to use a
function tied to the
axes object.

10/01/2024

ODE solvers – DIY
approach

• To make this more
like “odeint” we can
create a “stepper”
function that can
operate on any
function that return
derivatives.

• In this case, the
stepper function
evaluates the Euler
forward loop.

10/01/2024 12.010 Lec08 ODE 8

ODE solvers – DIY approach
• Now we can pass the
lorenz63() function into
the
euler_forward_stepper
() “black-box”

• We can sun the model twice, for
slightly different initial
conditions

• This will step forward the ODE a specified
number of steps using an Euler forward method
from some initial state. The DIY stepper has a
fixed timestep and a fixed method.

• odeint is similar but it has more internal smarts
to select timesteps and methods.

10/01/2024 12.010 Lec08 ODE 9

12.010 Lec08 ODE 10

ODE solvers – DIY approach
• Finally we can plot the

solution for two very
close sets of initial
conditions.

• The solution tracks
closely for some time
but then diverges
significantly.

• This is a major reason
why forecasting the
weather (especially
beyond 14 days) is
hard!

10/01/2024

ODE solvers – using Scipy
• DIY ODE solver is OK,

but -
• May be unstable for

longer timesteps.
• Only has one method
• The method is not very

accurate, so it requires
a small timestep

• scipy.integrate. Note – the solution
odeint() differs from the
generalizes to allow Euler forward DIY more advanced
methods, automated setup!
step size…

10/01/2024 12.010 Lec08 ODE 11

	

ODE solvers – using Scipy
Now we can play with
any ODE equations
numerically The images of the lynx and the snowshoe hare © Tom and Pat Leeson.

All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

e.g predator-prey model
(Lotka and Volterra –
1925, 1926)

10/01/2024 12.010 Lec08 ODE

�ℎ
= �ℎ − �ℎ� ��

��
��
= −�� + ��ℎ�

h – hare population
l – lynx population
� – hare growth rate
� – lynx death rate
� – lynx growth per hare killed

12

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

ODE solvers – using Scipy

Lotka Volterra code

10/01/2024 12.010 Lec08 ODE 13

ODE solvers – using Scipy

• Try with notebook Lec08-ode.ipynb

10/01/2024 12.010 Lec08 ODE 14

ODE solvers – starting from scratch

• Consider throwing a ball

z

�!�
= −�

��! 1. No friction (in a vaccum!).

�!� y = 0
��!

�!�
x = 0

��!

g
Lets try and write code to calculate the trajectory.

10/01/2024 12.010 Lec08 ODE 15

z

y

ODE solvers – starting from scratch

• Consider throwing a ball
2. With friction for F = (Fx , Fy , Fz)

�!�
= −� − �"��!

�!�
= 0 − �#��!

�!�
x = 0 − �$��!

g
Lets try and write code to calculate the trajectory.

10/01/2024 12.010 Lec08 ODE 16

Summary

• Ordinary differential equation (ODE) solutions:
• Introduce new variables for second—and higher-order derivatives. For

example, for an acceleration equation, add velocity as a variable.

• Methods from scipy
• Methods from scratch.

10/01/2024 12.010 Lec08 ODE 17

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01 18

https://ocw.mit.edu/
https://ocw.mit.edu/terms

