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Summary 

• Ordinary differential equation (ODE) solutions: 
• Methods from scipy 
• Methods from scratch. 
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ODE solvers 

• ODE solvers like odeint() are powerful for solving all sorts of differential
equations involving gradients with respect to a single variable. 
• Interesting examples include 

• Lorenz equations – a toy model for thinking about atmospheric predictability 
• Lotka-Volterra equations – a toy model for thinking about predator-prey cycles in 

ecosystems 
• Ballistic equations – the trajectory of golf ball or rocket 

• We can solve these systems ourselves using simple methods (e.g., Euler
forward), but in general, an ODE solver will have smart techniques to
automatically preserve accuracy as well as it can. 
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ODE solvers – DIY approach 

• To illustrate ODE solver concept we first code a simple solver explicitly 
by hand for the Lorenz63 equations 

This set of equations was devised by Ed Lorenz 
(https://en.wikipedia.org/wiki/Edward_Norton_Lorenz ) at 
MIT in the 1960s, with computational help from Ellen Fetter 
(https://en.wikipedia.org/wiki/Ellen_Fetter ). 

The equations were devised as a simple model for reasoning 
about chaotic phenomena in atmospheric dynamics. 

three state variables x, y and z that vary in time t with parameters rho, sigma and beta being used to 
explore model behavior. 
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ODE solvers – DIY approach 
• We can define 

a simple 
function for 
L63 equations 
• Note use of 

docstring as
a reminder 
for our future 
selves! 
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ODE solvers – DIY approach 
• Now lets define a 

loop that can 
timestep forward
the equations using 
an “Euler forward” 
scheme 

Here � is a vector of 
L63 model state 
[x,y,z], and � �! is 
our lorenz63()
function. 
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The superscript n denotes discrete time-levels, separated by 
time-step ∆�. 
The loop computes time series of values for x,y and z. 
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ODE solvers – DIY approach 
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• From the time 
series of values of x, 
y,z we can plot the
solution 

• Note – for some 
reason there is no 
plt.scatter3D() 
function, so we 
have to use a 
function tied to the 
axes object. 
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ODE solvers – DIY 
approach 

• To make this more 
like “odeint” we can 
create a “stepper” 
function that can 
operate on any 
function that return 
derivatives. 

• In this case, the 
stepper function 
evaluates the Euler 
forward loop. 
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ODE solvers – DIY approach 
• Now we can pass the
lorenz63() function into 
the 
euler_forward_stepper
() “black-box” 

• We can sun the model twice, for 
slightly different initial 
conditions 

• This will step forward the ODE a specified 
number of steps using an Euler forward method 
from some initial state. The DIY stepper has a 
fixed timestep and a fixed method. 

• odeint is similar but it has more internal smarts 
to select timesteps and methods. 
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ODE solvers – DIY approach 
• Finally we can plot the 

solution for two very 
close sets of initial 
conditions. 

• The solution tracks 
closely for some time 
but then diverges 
significantly. 

• This is a major reason 
why forecasting the 
weather (especially 
beyond 14 days) is
hard! 

10/01/2024 



    
     
 
    

 
   

    
    

 

   
 

 
 

   
   

   

ODE solvers – using Scipy 
• DIY ODE solver is OK,

but -
• May be unstable for

longer timesteps. 
• Only has one method 
• The method is not very

accurate, so it requires
a small timestep 

• scipy.integrate. Note – the solution 
odeint() differs from the 
generalizes to allow Euler forward DIY more advanced 
methods, automated setup! 
step size… 
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ODE solvers – using Scipy 
Now we can play with 
any ODE equations 
numerically The images of the lynx and the snowshoe hare © Tom and Pat Leeson. 

All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

e.g predator-prey model 
(Lotka and Volterra – 
1925, 1926) 
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�ℎ 
= �ℎ − �ℎ� �� 

��
�� 
= −�� + ��ℎ� 

h – hare population 
l – lynx population 
� – hare growth rate 
� – lynx death rate 
� – lynx growth per hare killed 
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ODE solvers – using Scipy 

Lotka Volterra code 

10/01/2024 12.010 Lec08 ODE 13 



    

   

ODE solvers – using Scipy 

• Try with notebook Lec08-ode.ipynb 
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ODE solvers – starting from scratch 

• Consider throwing a ball 

z 

�!� 
= −� 

��! 1. No friction (in a vaccum!). 

�!� y = 0
��! 

�!� 
x = 0

��! 

g 
Lets try and write code to calculate the trajectory. 
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ODE solvers – starting from scratch 

• Consider throwing a ball 
2. With friction for F = (Fx , Fy , Fz ) 

�!� 
= −� − �"��! 

�!� 
= 0 − �#��! 

�!� 
x = 0 − �$��! 

g 
Lets try and write code to calculate the trajectory. 
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Summary 

• Ordinary differential equation (ODE) solutions: 
• Introduce new variables for second—and higher-order derivatives. For 

example, for an acceleration equation, add velocity as a variable. 

• Methods from scipy 
• Methods from scratch. 
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