

12.010 Computational
Methods of Scientific

Programming
Tom Herring, tah@mit.edu

Chris Hill, cnh@mit.edu
Lecture 6: Solving problems numerically

mailto:tah@mit.edu
mailto:cnh@mit.edu

Topics

• Numerical methods:
• Differentiation
• Integration

• Numpy Scipy modules
• ODE solution (using modules from internet)

• Questions on Homework #1?

09/24/2024 12.010 Lec 06 2

 	

Numerical methods: Differentiation
• In an earlier Python notebook, we simulated the time evolution of a simple

diffusion equation

��
= �

�!�

�� ��!

We did this starting from some initial conditions � = �! for some starting time t=0
and integrating forward in time from t=0 to t=tfinal
We had to numerically evaluate the spatial derivative "

"$

!#
! and numerically integrate

forward in time

We will now look in a bit more detail at numerical differentiation and integration and
then look at tools in SciPy that can be used for simulating differential equations of
various sorts.

09/24/2024 12.010 Lec 06 3

Numerical methods: Differentiation
• Types of algorithms

• Mathematical/symbolic
" (#($)!*#! #!(!#$($!*#! !#$($!

• "# �
! = lim = lim = lim =2x

$→& $ $→& $ $→& $

or
! �#=nxn-1
!"

09/24/2024 12.010 Lec 06

• Numerical approaches use a finite “h” (“mesh” size) to approximate derivative
e.g

4

Numerical methods: Differentiation

• Error estimating
• With step size of h=0.001

• The error is

• Can we just keep reducing step size to get more accuracy?

09/24/2024 12.010 Lec 06 5

Numerical methods: Differentiation
• Lets try reducing step size

• works up to a point, but then finite precision numbers start to limit

09/24/2024 12.010 Lec 06 6

Sm
al

le
r s

te
p

si
ze

Numerical methods: Differentiation*
• We can test reducing step size in a notebook

Error gets smaller with
step size, to a point. Then
numerical truncation
impacts.

Later we will look in
libraries to help with this.

Smaller step error
09/24/2024 12.010 Lec 06 7

Numerical methods: Differentiation
• What about higher-order derivatives

• !
+$!$

!"
so we can apply our formula repeatedly

!"+ ≡
!"
!

this gives one discrete formula for higher-order derivatives e.g

09/24/2024 12.010 Lec 06 8

Numerical methods: Differentiation
• Testing a second order derivative for f(x)=x2 with x=2

in this case we find
smallest error (10-13) is
for largest step size
(h=0.1)!

09/24/2024 12.010 Lec 06

Sm
al

le
r s

te
p

si
ze

Smaller numerical error

9

Numerical methods: Differentiation

• Try with notebook Lec06-deriv.ipynb

09/24/2024 12.010 Lec 06 10

Numerical methods: Integration

• Symbolic rules e.g.

∫ �*�� =
+ �*,+ + �

*,+
% �#&% −

% �#&% •
#&% #&%

For definite integral ∫(�#�� '

1.34+ +-.0 �*�� ≈ ∑1.2 ∫-./ 5

09/24/2024 12.010 Lec 06

• Like derivative numerical is discrete, so applies to definite integral

� + �∆ * + � + � + 1 ∆ * ∆

11

 	

Numerical methods: Integration

• Basic Example 1
Lets take a really simple function, � = 2�, where we know analytically the
integral is simply �).
We can evaluate this function at discrete points

09/24/2024 12.010 Lec 06 12

Numerical methods: Integration

• Basic Example 1
Our simple discrete integral entails creating approximate areas

+*-.% %"*(�#�� ≈ ∑+*, ∫"*')
under our function and summing

Each of the rectangles is of width ∆

The height is the average of the two
function evaluations bracketing e.g
1

� + �∆ # + � + � + 1 ∆ #

2

09/24/2024 12.010 Lec 06 13

� + �∆ # + � + � + 1 ∆ # ∆

Numerical methods: Integration

• Basic Example 1
A simple integrator function would be

fx – is the function we defined
earlier
xs – are pre-defined points to
evaluate fx()
dx – is our step size ∆

09/24/2024 12.010 Lec 06 14

Numerical methods: Integration

• Basic Example 1
Lets see how it works for f(x)=2x!
We know the indefinite integral in this case, so we can create a function for that

09/24/2024 12.010 Lec 06

too and plot it.

15

Numerical methods: Integration

• Basic Example 1
Lets compare numerical and analytic integral

ni – is the numerical integral
ai – is the analytic integral (the
first value,
a_int_fx(xvals[0]),
is the constant of integration – 0
in this case)

Works perfectly – is that odd?
09/24/2024 12.010 Lec 06 16

Numerical methods: Integration

• Basic Example 1
We can apply to different functions by redefining fx() e.g.

these are not straight lines – how do they work

09/24/2024 12.010 Lec 06 17

 12.010 Lec 06

Numerical methods: Integration

• f(x) = 4x3

09/24/2024 18

4x3 x4

function integral

12.010 Lec 06

Numerical methods: Integration

• f(x) = 4x3

09/24/2024

∑+*,
+*-.% %

)
� + �∆ # + � + � + 1 ∆ # ∆

steps to sum.

19

Numerical methods: Integration
function integral

• f(x) = sin(x)

sin(x) -cos(x)
09/24/2024 12.010 Lec 06 20

Numerical methods: Integration
+*-.% %∑+*, � + �∆ # + � + � + 1 ∆ # ∆

• f(x) = sin(x)

09/24/2024 12.010 Lec 06 21

)
steps to sum.

Numpy/Scipy modules

• The Python Scipy package (https://docs.scipy.org/doc/scipy/index.html)
contains advanced functions for numerical integration (and differentiation)
working on Numpy arrys.

• These operate similarly to the basic examples shown
1. define some function f(y,t) that evaluates a function at points y, t (y can be vector

of values)
2. invoke a “control” function to evaluate the derivative or integral over some domain

• The Scipy functions have many sophisticated features built-in to adjust step
sizes and select where to evaluate functions and how to combine
evaluations. These can reduce error relative to simple approaches.

09/24/2024 12.010 Lec 06 22

https://docs.scipy.org/doc/scipy/index.html

Numpy/Scipy modules - odeint

• To fit sin(x) function, define
container function

• Treat x as the t variable in
odeint.

• Invoking odeint will
integrate our function and
return estimated values of
integral at xvals locations.

09/24/2024 12.010 Lec 06 23

Numpy/Scipy modules
- odeint

• odeint is usually
quite accurate
without any optional
parameters.

09/24/2024 12.010 Lec 06 24

Numerical Integration and Numpy/Scipy
modules

• try with notebook Lec06-integration.ipynb

09/24/2024 12.010 Lec 06 25

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01 26

https://ocw.mit.edu/
https://ocw.mit.edu/terms

