

12.010 Computational
Methods of Scientific

Programming 2021
Tom Herring, tah@mit.edu

Chris Hill, cnh@mit.edu
Lecture 5: Input/Output, Program design

9/19/2024 12.010 Lec 04 1

mailto:tah@mit.edu
mailto:cnh@mit.edu

Summary

• Input/Output: Simply first, more later
• Programming approach: Algorithm development

• Example of how to think about the process: Speed of coding versus speed of
execution

• Example with Lec05_polyarea.ipynb
• Verification of code. Expecting the unexpected.
• Common problems that can occur.

9/19/2024 12.010 Lec 04 2

Simple terminal input output*

• Notebook for this section is Lec05-keyboardIO.ipynb
• Keyboard access in Python uses the input function
• This function returns a string that can be cast if a single value (use int

or float function)
• For list or array input, other processing is needed.
• The map method can be used as an iterator to cast each value in the

string (see Notebook for example)
• These methods will be applied in an example program development:

The area of a polygon

9/19/2024 12.010 Lec 04 3

Problem solving

• The clearer you can state the problem you are solving, the algorithms to
use, and the possible problem areas, the easier your programming will be.
• Rough rule: 90% of time should be spent on design, only 10% on actually

writing code and getting it to work.
• A good program is like good literature (it should logically flow)
• All your programs should be written in English before you start.
• It is tempting to develop the code as you type with notebooks, but it’s best

to plan it beforehand and think about algorithms.
• With Python, web searches to see what modules are available and possible

approaches are useful too.

9/19/2024 12.010 Lec 04 4

Program structure

• Basically, all programs can be broken into three major parts:
• Input: The program collects the information it needs
• Computation: it does the necessary evaluations to solve the problem
• Output: Output its results for the user

• In an interactive program, these parts may be looped over.

9/19/2024 12.010 Lec 04 5

Language features

• All languages have the following basic features:
• Start and end features
• Input/output commands from and to a variety of sources
• Decision structure (i.e., conditional branching and looping structures, error

checking)
• Assignment (setting variables to values, computing results. Be cautious here;

binding of objects is common in Python. For numpy arrays use np.copy to
make a copy, = assignment with bind the variable – the x is z case)

• Module structure that allows separation of functions.

9/19/2024 12.010 Lec 04 6

Features

• A program is made up of the appropriate combinations of these
features.
• The specifics of the features vary between languages, and some have

more features than others.
• The syntax is different between all the languages, although there are

enough similarities to make it confusing
• So, while learning the syntax, you should keep careful note of how

commands are structured in each language.

9/19/2024 12.010 Lec 04 7

Specific problem example

• Problem: Find the area of an arbitrarily shaped plane figure.
• Figure defined by X, Y coordinates of vertices

Y

B

C

A

D

E X

9/19/2024 12.010 Lec 04 8

How do we start solving problem?

• First: Ask questions, and lots of them
• What basic algorithm should be used?
• Numerical integration by discretizing the shape? (i.e.. Make a fine grid over

the shape and sum the area of grid elements inside the shape)
• This approach has a problem in that the accuracy will be limited by element size in the

integration. Runtime will depend on the size of the grid.
• Break figure into triangles?

• Sounds OK. Can be made arbitrarily accurate
• Look for an analytic solution in a numerical algorithms book. Hint: Look at

Greenʼs Theorem, which relates an area integral of the curl of a function to
the line integral of the function (see:
http://mathworld.wolfram.com/GreensTheorem.html

9/19/2024 12.010 Lec 04 9

http://mathworld.wolfram.com/GreensTheorem.html

Sample problem

• Letʼs say we decide that breaking the figure into triangles is the
algorithm to be used.
• So what will we need to do this:

(a) How do we get the information about the shape into the program?
(b) A way of computing the area of a triangle
(c) A way of forming triangles from the coordinates.
(d) how do we report the result?

• Algorithms (and routines) to compute areas of polygons can be found
on the web (search “area of polygon”). In programming, we look at
how to build these modules into a complete system that includes the
algorithm, IO, and logic needed.

9/19/2024 12.010 Lec 04 10

Input options

(a.1) How do we get the information into the program?
(a.2) Consider possible cases:

(a) OK (b) Non-unique

C

DE

B

A CD

E

B

A

(a.3) Input can not be completely arbitrary (although in some
cases it can be)

9/19/2024 12.010 Lec 04 11

Input options

• In some cases, for an arbitrary set of coordinates, the figure is
obvious, but in other cases it is not.
• So how do we handle this?
• Force the user to input or read the values in the correct order.
• What if the user makes a mistake How do we define area of black figure?

and generates a figure with Is red figure what we really meant?

crossing lines?
• Warn user? Do nothing?

9/19/2024 12.010 Lec 04 12

Input options for Polygon

• By considering scenarios beforehand, we can make a robust program.
• Inside your program and in documentation, you describe what you have

decided to assume
• You may also leave “place-holders” for features that you may add later –

not everything needs to be done in the first release.
• Final input option: Ask the user the number of points that will be entered?

Or read a list until the end of the list is specified by some means?
• The maximum number of points a user can enter could be an issue for

some languages (not Python, except for memory size).
• If we plan to plot the polygon, do we make the user close the polygon, or

do we do it?

9/19/2024 12.010 Lec 04 13

Calculation of area

• Option 1: Area = base*height/2
• Base compute by Pythagoras theorem; height some method

• Option 2: Cross product: form a triangle by two vectors, and the
magnitude of the cross product is twice the area
• This sounds appealing since forming vectors is easy and forming

magnitude of a cross product is easy
• If we decide to go with option 2, then this sets how we will form the

triangles.

9/19/2024 12.010 Lec 04 14

Forming triangles

• If we use option 2 for the area calculation, then we will form the
triangles from vectors.

• To form the triangles, we form the brown vectors, which we do by
sequencing around the nodes of the figure. Not the only method.

9/19/2024 12.010 Lec 04 15

Output

• Mainly, we need to report the area. Consider units and possibly scale
factors if we get coordinates from an image.
• Should we tell the user if lines cross? How do you detect this?
• Make a plot of the polygon (may require saving all the node

information)
• Is there anything we have forgotten?
• So we have now designed the basic algorithms we will use, and now

we need to implement them.

9/19/2024 12.010 Lec 04 16

Write program in English

• Think of this operation as a Recipe
• Start: Get coordinates of nodes of the polygon from the user. Possibly get units of

coordinates — still debating how much checking we will do?
• Since we will sum the areas of each triangle, set the initial value to 0.
• Loop over nodes starting from the third one (the first node will be the apex of all

triangles, and the second node will form the first side of the first triangle) — need
to check that three or more nodes have been entered!
• Form the vectors between the two sides of the triangle (vector from apex to current node

and previous node)
• Cross the vectors to get the area increment (only Z-component needed, so that we will not

need to implement a full cross product)
• Sum the area increment into the total sum.

• Plot and output the results (and maybe a summary of the nodes)
• Done!

9/19/2024 12.010 Lec 04 17

Design parts in more detail

• Usually, at this stage, you think of things you had not considered before.
• Useful to select variable and module names:
• Variables:

• Numnode – Number of nodes input by the user (sometimes it is better to get the
program to compute this rather than have the user specify it: they may make a
mistake).

• [Thought: for large numbers of nodes, maybe it is better to compute area
as nodes are entered? This will have an impact on what we can output at
the end of the program (or we could output as we go?]
• nodes_xy[2,:] -- coordinates of nodes saved as double indexed array (how these are

specified is language dependent)

9/19/2024 12.010 Lec 04 18

Variable/module names

• trivec – Array with the vectors that form each triangle
• area, darea -- Total area and incremental area for the current triangle.

• Functions/Modules needed
• Readnodes – read the nodes of the polygon
• Form_vectors – Forms the triangle vectors from the node coordinate
• Triarea – computes the area (uses modified cross-product formula)
• Plotpoly – Plots the polygon

• Notebook or Python script calls these functions

9/19/2024 12.010 Lec 04 19

Implement

• With design in hand, variables and modules defined the code can be
written.
• Usually, small additions and changes occur during the code writing,

especially if it is well documented.
• Specifically: See polyarea.ipynb code.
• Once the code is running, time to verify.

9/19/2024 12.010 Lec 04 20

Verification

• Once code is implemented and running, verification can be done in a
number of ways.
• Each module can be checked separately to ensure that it works.

Especially check the error treatment routines to make sure that they
work.
• One then tests with selected examples where the results are known.

9/19/2024 12.010 Lec 04 21

Examine the program polyarea.ipynb*
• Implementation of the algorithm described above.
• Take note of the documentation
• Checks on human input

• How might we expand this notebook? Allow an image to be read (e.g., a
satellite image of growing crops and select the points in the polygon
graphically.

9/19/2024 12.010 Lec 04 22

Common program problem with algorithm
development
• Numerical problems. Specifically

• Adding large and small numbers
• Mixed-type computations (i.e., integers, 8-byte floating point, integer

division)
• Division by zero. Generate not-a-number or inifinte (Inf) on many machines
• The square root of a negative number (Not-a-Number, NaN)
• Values which should sum to zero but can be slightly negative.
• Testing equality of floating-point values

9/19/2024 12.010 Lec 04 23

Common problems

• Trigonometric functions computed low gradient points
[e.g., cos-1(~1), tan(~p)]
• Quadrants of trigonometric functions

• For angle return, it is best to compute sin and cosine independently and use two-
argument tan-1 function (arctan2).

• Wrong units on functions (e.g., degrees instead of radians)
• Exceeding the bounds of memory and arrays.
• Being confused by separate copies of objects versus bound versions.
• Infinite loops (waiting for an input that will never come or miscoding the

exit)
• Unexpected input that is not checked.

9/19/2024 12.010 Lec 04 24

Summary

• Input/Output: Simply first, more later
• Programming approach: Algorithm development

• Example of how to think about the process: Speed of coding versus speed of
execution

• Example with Lec05_polyarea.ipynb
• Verification of code. Expecting the unexpected.
• Common problems that can occur.

9/19/2024 12.010 Lec 04 25

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01 26

https://ocw.mit.edu/
https://ocw.mit.edu/terms

