

12.010 Computational
Methods of Scientific

Programming
Tom Herring, tah@mit.edu

Chris Hill, cnh@mit.edu
Lecture 2: Hardware, Boolean algebra, Loops

mailto:tah@mit.edu
mailto:cnh@mit.edu

Topics

• Review of computer hardware and impact on programming
• What happens with “Hello World”

• Starting basic concepts: Operators
• = assignment or binding (this is a critical concept in Python and varies between languages)

• Suites: single blocks of code with header line; Branching and looping
• Boolean Algebra:

• Logical tests
• And/or/xor: Truth tables

• Loops:
• For loops
• While loops

• Today’s class will get us to looking at the = operator.

9/10/2024 12.010 Lec 02 2

Software to hardware

• Most of this class is concerned with tools for writing software, i.e.
programming.

• Ultimately programs “execute” on computer hardware

• Hardware imposes some limits of what a program can do, how a program
works

• This section looks at some basic hardware concepts that can be useful in
understanding what limits it is useful to have in mind when programming.

9/10/2024 12.010 Lec 02 3

Raspberry Pi 4 Summit Supercomputer

© Shenzhen Trxcom Electronics Co., Limited. All rights reserved.
This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair-use.

© 2025 Apple Inc. All rights reserved. This content is

Modern computers all have similar hardware
building blocks

Mac Laptop

excluded from our Creative Commons license. For more
Image courtesy of DOE. Image is in the public domain. information, see https://ocw.mit.edu/help/faq-fair-use.Main hardware pieces are

1. CPU (Intel, AMD, IBM, ARM)
2. dynamic memory (RAM)
3. permanent storage (disk, SSD, memory card)
4. devices (network, graphics/GPU, screen, keyboard)12.010 Lec 02 9/10/2024 4

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

Permanent

U
SB devices Video devices

9/10/2024

Wireless Dynamic Memory (RAM) CPU
network

Ethernet network device
device

In programming
most of the
hardware details
are “abstracted”
away.
But physical limits
(amount of
memory, CPU

storage (SD- speed) affect what
512.010 Lec 02 CARD) is possible.

© Shenzhen Trxcom Electronics Co., Limited. All rights reserved.
This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair-use.

https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use
https://ocw.mit.edu/help/faq-fair-use

CPU and memory
• All computers have CPU and memory at their heart.

• A Python programming ultimately is transformed into a sequence of very
basic instructions doing a few types of things

1. Read some bits (1s and 0s) from memory into a local “register” on a CPU
2. Combining or comparing different values in different “registers” (i.e. adding,

multiplying, testing if less than or bigger than etc…)
• These computations all work with finite size, binary (sequences of 1 and 0) representations of

information
3. Updating values in ”registers”
4. Write some bits from a register back to memory.

• There are variations on each of these steps, but at its heart all a CPU does is
lots combinations of 1 – 4 over and over, at very high speed.

9/10/2024 12.010 Lec 02 6

CPU reads Memory “instruction” An example

Python code CPU
…

CPU
writes
value 1
to
memory

from memory.

0000000000000000000000000000001

In response to the Python above
• Python interpreter will write CPU instructions to memory
• CPU will read the instructions
• CPU execute instructions
• Note – 1 here is represented by 32-bits. CPU works in fixed sizes (16-,

32-, 64- bits. In Python, by default, an integer uses 32-bits.

In a modern CPU this is potentially happening billions of times per second. 9/10/2024 12.010 Lec 02 7

Memory limits
• Typical laptop had 16GB of memory.
• 1 byte is 8 bits. 16GB is 16 x 109 bytes or 1.28 x 1011 bits.
• 16GB is enough memory for 4 x 109 32-bit integers • one

matrix with 63,000 x 63,000
• Because the computer also stores instructions for program

and for operating system and data for other programs. The
actual limit is less.
• • in reality, a laptop should be OK to work with matrices

up to 2000 x 2000
• my laptop is OK with adding 40,000 x 40,000
• with 60,000 x 60,000 - very slow…..

9/10/2024 12.010 Lec 02 8

 Memory usage and time*

4000 x 4000 => 122MB per matrix 40000 x 40000 => 11GB per matrix

9/10/2024 12.010 Lec 02 9

60000 x 60000 => 27GB per matrix 100,000 x 100,000 Python kernel dies!
9/10/2024 12.010 Lec 02 10

Memory units
• 1 byte – 8-bits
• 1KB – 1024 bytes
• 1Kb – 1024 bits
• 1MB – 1024 x 1024 bytes
• 1GB – 230 bytes
• 1TB – 240 bytes

Variables

1 byte – ASCII character
4 bytes – integer, “single”
precision float/real
8 bytes – “long” integer,
“double” precision
float/real
16 bytes – “quad”
precision float/real

For all except ”quad” precision, a CPU will have dedicated circuits (transistors)
for working with these sorts of data in “hardware,” i.e., optimized fast
computation.
9/10/2024 12.010 Lec 02 11

Number representation
• CPUs can only compute fast on a few specific ways of representing

information.
• Any other representations ultimately use these primitives. This will be slow because the

primitives have to combine them in some way to emulate other representaions.

• Key primitives
• 1-byte characters and Booleans
• 4-byte integers (32-bit)
• 8-byte integers
• 4-byte floating point
• 8-byte floating point

• For these types a CPU can typical a primitive operation (add/subtract,
multiply, compare) in a few CPU clock cycles (typically 1 cycle is 1ns).

9/10/2024 12.010 Lec 02 12

Integer numbers
• Integer numbers can be represented exactly (up to the range

allowed by the number of bytes)
• A 2-byte integer, unsigned 0-65535, signed ±32767

(sometimes called short)
• A 4-byte integer, unsigned 0-4294967295, signed
±2147483827
• (With a 32-bit address bus, can have 4Gbytes of memory—

reason max memory is limited in older computers. Nearly all
machines are now 64-bit; still this designation in some software
downloads)

9/10/2024 12.010 Lec 02 13

Floating point

• Representations vary between machines (often reason binary files can not
be shared).

± ±

Bits to represent value

Exponent Mantissa

• Precise layout of bits depends on machine and format all formats are
(mantissa)*2^(exponent). (Above is not IEEE, exponent is 2s-complement
in IEEE) i.e., we think of powers of 10, but computer is powers of 2.
• IEEE: 4-byte floating point is 8 bit exponent, 24 bit mantissa (1 sign bit for

each), 7 significant digits, range 10±38

9/10/2024 12.010 Lec 02 14

Hands on exercise
• The Python notebook under

https://github.com/christophernhill/fall-2022-12.010/tree/main/looking-at-bits

point numbers.

There is Python in the exercise notebook ("bit-int-
float.ipynb") that may not be obvious yet. By the end of
the class all the features will be explained.
For now we can explore and experiment with some of
the code as is.

9/10/2024 12.010 Lec 02

contains some python code for exploring bit patterns in integers and floating

15

https://github.com/christophernhill/fall-2022-12.010/tree/main/looking-at-bits
https://github.com/christophernhill/fall-2022-12.010/tree/main/looking-at-bits
https://github.com/christophernhill/fall-2022-12.010/tree/main/looking-at-bits
https://github.com/christophernhill/fall-2022-12.010/tree/main/looking-at-bits
https://github.com/christophernhill/fall-2022-12.010/tree/main/looking-at-bits
https://github.com/christophernhill/fall-2022-12.010/tree/main/looking-at-bits
https://github.com/christophernhill/fall-2022-12.010/tree/main/looking-at-bits
https://github.com/christophernhill/fall-2022-12.010/tree/main/looking-at-bits
https://github.com/christophernhill/fall-2022-12.010/tree/main/looking-at-bits

Operator groups in Python

• Arithmetic operators
• Assignment operators
• Comparison operators
• Logical operators
• Identity operators
• Membership operators
• Bitwise operators

• Other languages have similar types of grouping, but it does vary. Symbols for
types of operations can differ and overlap

• Material here based on
https://www.w3schools.com/python/python_operators.asp

9/10/2024 12.010 Lec 02 16

https://www.w3schools.com/python/python_operators.asp

Arithmetic operators
Operator Name Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

// Floor division x // y

9/10/2024 12.010 Lec 02 17

Assignment operators*
• = is the assignment or binding operator. All operators can be used ?=

form. Binding can be though of memory location assignment.
• a=b=c=0 # form is also allowed. (operator= form does not work here

but there are other subtle effects of op= in terms of binding.
• a,b = 1,2 # acceptable use of assignment statement
Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3
9/10/2024 12.010 Lec 02 18

Summary

• Review of computer hardware and impact on programming
• What happens with “Hello World”

• Starting basic concepts: Operators
• = : assignment or binding

• Focus on the difference between assignment and binding.

9/10/2024 12.010 Lec 02 19

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01 20

https://ocw.mit.edu/
https://ocw.mit.edu/terms

