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About 12.010 - |

* Introduces programming from perspective of physical science use.

Pro%rammmg examples are taken from simple physics and mathematics
problems

* Classes introduces programming languages a researcher in a lab might
encounter — Python, Julia, R, Matlab%Octave, C, C++, Fortran.
* Two main parts to class
 Homeworks — 3 (due Fridays, at least 3+ weeks apart).
* Project and presentation - individual or group (due end of class).
» Goal is that by end of class you will feel more confident that
 you could work in a research project involving programming

e you would know where to start to try and understand an unfamiliar program

e you know how to write, tested and run some interesting scientific computing
programs by yourself



About 12.010 - Il

* Homeworks

* Each has 2-3 parts, involve writing some code, based on some example covered in
class and available online.

* Graded on written answer and working code.

* Projects
 Topic can be related to any science/math problem of interest.
* Can be based in major, another domain research course etc...

* Usually involve writing new code from scratch, including find and understanding
algorithm, developing some core compute piece, developing some input and output
piece.

* Graded on presentation, working and documented code.

* Group projects, with work divided across several people, or individual projects are
fine.



About computers

A modern computer
contains a CPU with
multiple cores and
billions of
transistors.

Programming is
about getting those
billions of
transistors to act in
some way to solve a
problem.

Programming
languages like
Python, Julia, R,
Matlab, C, Fortran
C... provide high-
level “abstractions”
that mask the
underly(i)r9%5/2024
complexity.
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Programming languages

* In scientific computing/computational science there are multiple
programming languages

* Some of the most common ones include

* Python, R, Julia, Matlab/Octave, C, C++, Fortran

* The languages have different strengths, but also have a lot of ideas and
concepts in common.

* Practices around how to develop programs, how to test and check, how to
formulate problems are similar too.

* In 12.010 we introduce programming in Python, but then
 explore how basic programs look in all the languages listed
* illustrate different features that are found in different languages



Getting started

* Programming can only be learned hands-on experience
* Computers are not that smart

* Programming involves puzzling
* over how to express a problem in a way a computer can solve it,
* following rules about how to instruct the computer,
* methodically trying to understand whether program is behaving as expected,

* building up more complete and complex programs step-by-step.

* The first “puzzle” is configuring a "programming environment” to work in.
* In this class we will begin by using Jupyter Notebooks as our common programming
environment
* Jupyter Notebooks are widely used in teaching programming and data science
* They are not the only programming environment, and have some limitations, but
they are very useful and common starting point.



First notebooks

e Start by trying cloud resource — see "Launch Jupyterhub Class
Exercise” in Assignments

* Then install locally — see “Install Jupyter Notebook Locally Class
Exercise” in Assignments.

* There are example Notebooks in the Week 1 section we will try. Not
all of these cases will be covered today.
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