12.010 Computational
Methods of Scientific
Programming 2023

Tom Herring, tah@mit.edu
Chris Hill, cnh@mit.edu

Lec 01: Getting started and setup

mailto:tah@mit.edu
mailto:cnh@mit.edu

About 12.010 - |

* Introduces programming from perspective of physical science use.

Pro%rammmg examples are taken from simple physics and mathematics
problems

* Classes introduces programming languages a researcher in a lab might
encounter — Python, Julia, R, Matlab%Octave, C, C++, Fortran.
* Two main parts to class
 Homeworks — 3 (due Fridays, at least 3+ weeks apart).
* Project and presentation - individual or group (due end of class).
» Goal is that by end of class you will feel more confident that
 you could work in a research project involving programming

e you would know where to start to try and understand an unfamiliar program

e you know how to write, tested and run some interesting scientific computing
programs by yourself

About 12.010 - Il

* Homeworks

* Each has 2-3 parts, involve writing some code, based on some example covered in
class and available online.

* Graded on written answer and working code.

* Projects
 Topic can be related to any science/math problem of interest.
* Can be based in major, another domain research course etc...

* Usually involve writing new code from scratch, including find and understanding
algorithm, developing some core compute piece, developing some input and output
piece.

* Graded on presentation, working and documented code.

* Group projects, with work divided across several people, or individual projects are
fine.

About computers

A modern computer
contains a CPU with
multiple cores and
billions of
transistors.

Programming is
about getting those
billions of
transistors to act in
some way to solve a
problem.

Programming
languages like
Python, Julia, R,
Matlab, C, Fortran
C... provide high-
level “abstractions”
that mask the
underly(i)r9%5/2024
complexity.

escribes t

Tran5|stor count
50,000,000,000

\Io(n(, s Law: lhc numl)m of transistors on microchips doul)lcs C\ ery two years
Mo : , in Data

empirical regularity that the number of transistors on integrated circuits doubles itely every two
rtant for other J.I'."%?',k,v'5'*EIHHHL"E(‘;»m:;::"-‘iru

mputing - such as proces ‘E(‘.:i speed or the price of computers.

<
B .o'o ©
10,000,000,000 . . .
Number of transistors in CPU x 105 in g§9
: . 083 °
30 years. Increases projects and fields et 5 W gog
A ®
1,000,000,000 that can make useful use of software o808,°
500,000,000 . -) . > 2.9
in all walks of life, including science o o8
S and engineering. - 3§.o°
100,000,000 PR
50,000,000 i ° o &
8o -
10,000,000
©
5,000,000 o 89
L4
s % 11x10° transistors,
1,000,000 > *
500,000 - ° up to 3x10° Hz
%0 fitg ® switching
<
100,000 © frequency.
50,000
o o o2 ¢
10,000 ¢ e e \
5,000 8 3 Image courtesy of Hannah Ritchie and Max
L4 7T O . .
° Roser on Our World in Data. License: CC BY.
1,000
QO AV AX A D O AV oox b D R V™o DO b @ O O & b D O
AR GG ARG S g e

Ki/Transistor 12 O}IQLQUSO:‘MH h the microchip was first introduced 4

Programming languages

* In scientific computing/computational science there are multiple
programming languages

* Some of the most common ones include

* Python, R, Julia, Matlab/Octave, C, C++, Fortran

* The languages have different strengths, but also have a lot of ideas and
concepts in common.

* Practices around how to develop programs, how to test and check, how to
formulate problems are similar too.

* In 12.010 we introduce programming in Python, but then
 explore how basic programs look in all the languages listed
* illustrate different features that are found in different languages

Getting started

* Programming can only be learned hands-on experience
* Computers are not that smart

* Programming involves puzzling
* over how to express a problem in a way a computer can solve it,
* following rules about how to instruct the computer,
* methodically trying to understand whether program is behaving as expected,

* building up more complete and complex programs step-by-step.

* The first “puzzle” is configuring a "programming environment” to work in.
* In this class we will begin by using Jupyter Notebooks as our common programming
environment
* Jupyter Notebooks are widely used in teaching programming and data science
* They are not the only programming environment, and have some limitations, but
they are very useful and common starting point.

First notebooks

e Start by trying cloud resource — see "Launch Jupyterhub Class
Exercise” in Assignments

* Then install locally — see “Install Jupyter Notebook Locally Class
Exercise” in Assignments.

* There are example Notebooks in the Week 1 section we will try. Not
all of these cases will be covered today.

MIT OpenCourseWare
https://ocw.mit.edu

12.010 Computational Methods of Scientific Programming, Fall 2024

For more information about citing these materials or our Terms of Use,
visit https://ocw.mit.edu/terms.

09/05/2024 12.010 Lec 01

https://ocw.mit.edu/
https://ocw.mit.edu/terms

