Problem Set 8

The Lorenz model is given by

$$
\begin{aligned}
\dot{X} & =\operatorname{Pr} Y-\operatorname{Pr} X \\
\dot{Y} & =-X Z+r X-Y \\
\dot{Z} & =X Y-b Z
\end{aligned}
$$

where Pr is the Prandtl number (usually taken to equal 10), b is a constant (usually taken to equal $8 / 3$) and r is the ratio of the Rayleigh number to the critical Rayleigh number.

1. Find the location (analytically) of the three steady state solutions for the Lorenz model. Give a physical interpretation of these steady state solutions.
2. Show analytically that the solution corresponding to conduction becomes unstable for $r>1$.
3. Show analytically that the steady-state solutions corresponding to convection become unstable for

$$
r>r_{c}=\frac{\operatorname{Pr}(\operatorname{Pr}+3+b)}{\operatorname{Pr}-1-b}
$$

4. Use lorenz to verify numerically (with plots) that steady-state convection is unstable for $r>r_{c}$ (use $\operatorname{Pr}=10, \mathrm{~b}=8 / 3$). $r=28$ gives nice results. Give a physical interpretation of the time dependent behaviour you have found for $X(t), Y(t)$, and $Z(t)$. You may wish to make Poincaré sections and/or projections in the $X Y, X Z$, and $Y Z$ planes.
5. Find $X(t)$ for $r=166$ and $r=166.1$. What observations can you make? Remember to let the transients die out.
6. Verify exponential divergence of small differences in initial conditions for $r=170$. Assuming $\delta(t)=\delta_{0} e^{\lambda t}$, where $\delta(t)$ is the distance between two points in phase space, find the value of λ, the largest Lyapanov exponent. What accounts for the long-time behaviour of $\delta(t)$?
7. Obtain another example of your own choosing of some interesting behaviour of the Lorenz model and describe what you found.

MIT OpenCourseWare
https://ocw.mit.edu
12.006J/18.353J/2.050J Nonlinear Dynamics: Chaos

Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

