## Problem Set 6

1. The Rössler system is given by

$$
\begin{align*}
\dot{x} & =-y-z  \tag{1}\\
\dot{y} & =x+a y  \tag{2}\\
\dot{z} & =b+z(x-c) . \tag{3}
\end{align*}
$$

We take the parameters $a=b=0.2, c=5.7$.
(a) Use roessler to simulate the time evolution of these equations, using the provided initial condition. Plot time series ${ }^{1}$ of $x(t), y(t), z(t)$, and comment on the similarities and differences.
(b) Calculate power spectra ${ }^{2}$ of $x, y, z$ (again $\log -\log$ scales help), and comment on the similarities and differences. Are the spectra sparse or dense? What does this mean?
(c) Using the time series data you just obtained, make a Poincaré section in the plane $x=0$, and plot your result. You should see some order emerge out of the chaos. Feel free to do this any way you like, but here is one suggestion: make a new array that contains only the points where $|x(t)|<0.1$ (because our numerical integration uses discrete timesteps, the data points themselves won't intersect $x=0$ exactly). You can do this in Python by writing something like

$$
x_{-} \text {intersect }=x[n p . \operatorname{abs}(x[:, 0])<0.1,:],
$$

or in Matlab by writing

$$
x_{-} \text {intersect }=x(\operatorname{abs}(x(:, 1))<0.1,:) .
$$

This gives you a sequence of $(x, y, z)$ values for where the flow intersects with $x=0$.
(d) Now assume that $x(t)$ is experimental data, and that you know nothing else about the system (i.e. you don't know $y(t), z(t)$, or the underlying equations). Use the method of delays ${ }^{3}$ to reconstruct the geometry of the attractor in 3D phase space.

[^0]MIT OpenCourseWare
https://ocw.mit.edu
12.006J/18.353J/2.050J Nonlinear Dynamics: Chaos

Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.


[^0]:    ${ }^{1}$ We suggest using an end time $t_{\text {end }}$ of order 1000.
    ${ }^{2}$ Use your power spectrum code from last week. Please don't hesitate to ask for help if you need it!
    ${ }^{3}$ i.e. plotting $x(t), x(t+\tau), x(t+2 \tau)$ for some constant $\tau$ large enough for "independence".

