Problem Set 10

1. Consider the logistic map

$$x_{n+1} = f(x_n, \mu) \tag{1}$$

$$= 4\mu x_n (1 - x_n) \qquad 0 \le x_n \le 1$$
 (2)

- (a) Let p and q be the points in a 2-cycle; i.e., p = f(q) and q = f(p), with $p \neq q$. Also let $g(x, \mu) = f(f(x, \mu), \mu)$. The 2-cycle is superstable when dg/dx = 0 at either x = p or x = q. Show that superstability requires that either p = 1/2 or q = 1/2.
- (b) Find the value of μ that yields a superstable 2-cycle.
- (c) Let $\bar{\mu}_n$ be the value of μ for which a 2^n -cycle is superstable. Write an implicit but exact formula for $\bar{\mu}_n$ in terms of the function $f(x, \mu)$.
- (d) Your formula from part 1c can be used to find the μ_n . To help you do this, **superstable** iterates the logistic map for N steps for a range of different values of μ , and plots the final value.

By choosing appropriate values for the initial condition, N, and range over which to vary μ , find $\bar{\mu}_i$, i = 2, ..., 7. (Hint: you will need to keep zooming in to smaller and smaller ranges of μ .)

- (e) Evaluate $(\bar{\mu}_6 \bar{\mu}_5)/(\bar{\mu}_7 \bar{\mu}_6)$. What is the significance of this number?
- 2. Another one-dimensional map is given by

$$x_{n+1} = x_n e^{\mu(1-x_n)}, \qquad x \ge 0, \mu \ge 0.$$

Unlike the logistic map, this map has the property that x_n is always positive provided that the initial value is positive. Therefore in an ecological context it has the property that the "population" x_n can never become extinct.

- (a) Find the fixed point(s) and examine their stability.
- (b) Use **bifdiag** to create a rough map of the asymptotic values of x_n for varying μ . The code is set up for the logistic map, so you'll have to make some small changes.
- (c) Find the first four values of μ where period doubling occurs. You may want to identify the approximate region of μ values in which this happens, and re-run **bifdiag** at higher resolution.
- (d) Let μ_n be the value of μ where a period doubling from period 2^n to period 2^{n+1} occurs. The Feigenbaum constant δ may be estimated from the formula

$$\delta = \lim_{n \to \infty} \frac{\mu_{n+1} - \mu_n}{\mu_{n+2} - \mu_{n+1}}.$$

Use the values of μ_n obtained above to estimate δ . Is your estimate of δ similar to the value obtained from the logistic map (4.669...). Why or why not?

3. Consider the quartic map

$$x_{n+1} = \mu [1 - (2x_n - 1)^4], \qquad 0 \le \mu \le 1$$

As in the previous question, create a rough map of the asymptotic values of x_n for varying μ , find the first few values of μ_n , and estimate δ . Is your estimate of δ similar to the value obtained from the logistic map (4.669...). Why or why not?

12.006J/18.353J/2.050J Nonlinear Dynamics: Chaos Fall 2022

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.