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1 Forced oscillators and limit cycles

1.1 General remarks

How may we describe a forced oscillator?
The linear equation

θ̈ + γθ̇ + ω2θ = 0 (1)

is in general inadequate. Why?

Linearity⇒ if θ(t) is a solution, then so is αθ(t), α real. This is incompatible
with bounded oscillations (i.e., θmax < π).

We therefore introduce an equation with

• a nonlinearity; and

• an energy source that compensates viscous damping.
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1.2 Van der Pol equation

Consider a damping coefficient γ(θ) such that

γ(θ) > 0 for |θ| large

γ(θ) < 0 for |θ| small

Express this in terms of θ2:

γ(θ) = γ0

(
θ2

θ20
− 1

)
where γ0 > 0 and θ0 is some reference amplitude.

Now, obviously,
γ > 0 for θ2 > θ20

γ < 0 for θ2 < θ20

Substituting γ into (1), we get

d2θ

dt2
+ γ0

(
θ2

θ20
− 1

)
dθ

dt
+ ω2θ = 0

This equation is known as the van der Pol equation. It was introduced in the
1920’s as a model of nonlinear electric circuits used in the first radios.

In van der Pol’s (vaccum tube) circuits,

• high current =⇒ positive (ordinary) resistance; and

• low current =⇒ negative resistance.

The basic behavior: large oscillations decay and small oscillations grow.

We shall examine this system in some detail. First, we write it in non-
dimensional form.

We define new units of time and amplitude:
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• unit of time = 1/ω

• unit of amplitude = θ0.

We transform

t → t′/ω

θ → θ′θ0

where θ′ and t′ are non-dimensional.

Substituting above, we obtain

ω2d2θ′

dt′2
θ0 + γ0

[(
θ′θ0
θ0

)2

− 1

]
dθ′

dt′
ωθ0 + ω2θ′θ0 = 0

Divide by ω2θ0:
d2θ′

dt′2
+
γ0
ω

(
θ′2 − 1

) dθ′

dt′
+ θ′ = 0

Now define the dimensionless control parameter

µ =
γ0
ω
> 0.

Finally, drop primes to obtain

d2θ

dt2
+ µ(θ2 − 1)

dθ

dt
+ θ = 0. (2)

What can we say about the phase portraits?

• When the amplitude of oscillations is small (θmax < 1), we have

µ(θ2max − 1) < 0⇒ negative damping

Thus trajectories spiral outward:

θ

θ
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• But when the amplitude of oscillations is large (θmax > 1),

µ(θ2max − 1) > 0⇒ positive damping

The trajectories spiral inward:

θ

θ

Intuitively, we expect a closed trajectory between these two extreme cases:

θ

θ

This closed trajectory is called a limit cycle.

For µ > 0, the limit cycle is an attractor (and is stable).

This is a new kind of attractor. Instead of representing a single fixed point,
it represents stable oscillations.

Examples of such stable oscilations abound in nature: heartbeats, circadian
(daily) cycles in body temperature, etc. Small perturbations always return
to the standard cycle.

What can we say about the limit cycle of the van der Pol equation?

Chapter 7 of Strogatz [1] shows how one can prove the existence and stability
of limit cycles.
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In the present case, we can make substantial progress with a simple energy
balance argument.

1.3 Energy balance for small µ

References: Bergé et al. [2]

Let µ→ 0, and take θ small. Using our previous expression for energy in the
pendulum, the non-dimensional energy is

E(θ, θ̇) =
1

2
(θ̇2 + θ2)

The time variation of energy is

dE

dt
=

1

2
(2θ̇θ̈ + 2θ̇θ)

From the van der Pol equation (2), we have

θ̈ = −µ(θ2 − 1)θ̇ − θ.

Substituting this into the expression for dE/dt, we obtain

dE

dt
= µθ̇2(1− θ2)− θθ̇ + θθ̇ (3)

= µθ̇2(1− θ2) (4)

Now define the average of a function f(t) over one period of the oscillation:

f ≡ 1

2π

∫ tO+2π

t0

f(t)dt.

Then the average energy variation over one period is

dE

dt
=

1

2π

∫ t0+2π

t0

dE

dt
dt.

Substituting equation (4) for dE/dt, we obtain

dE

dt
= µθ̇2 − µθ̇2θ2.
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In steady state, the production of energy, µθ̇2, is exactly compensated by the

dissipation of energy, µθ̇2θ2. Thus

µθ̇2 = µθ̇2θ2

or
θ̇2 = θ̇2θ2.

Now consider the limit µ→ 0 (from above).
We know the approximate solution:

θ(t) = ρ sin t,

i.e., simple sinusoidal oscillation of unknown amplitude ρ.

We proceed to calculate ρ from the energy balance.

The average rate of energy production is

θ̇2 ' 1

2π

∫ t0+2π

t0

ρ2 cos2 tdt =
1

2
ρ2.

The average rate of energy dissipation is

θ̇2θ2 ' 1

2π

∫ t0+2π

t0

ρ4 sin2 t cos2 tdt =
1

8
ρ4.

The energy balance argument gives

1

2
ρ2 =

1

8
ρ4.

Therefore
ρ = 2.

We thus find that, independent of µ = γ0/ω, we have the following approxi-
mate solution for µ� 1:

θ(t) ' 2 sin t.

That is, we have a limit cycle with an amplitude of 2 dimensionless units.
Graphically,
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1.4 Limit cycle for µ large

Reference: Strogatz [1], Ch. 7

The case of µ large requires a different analysis.

First, we introduce an unconventional set of phase plane variables (not ẋ =
y, ẏ = . . .). That is, the phase plane coordinates will not be θ and θ̇.

Recall the van der Pol equation (2), but write in terms of x = θ:

ẍ+ µ(x2 − 1)ẋ+ x = 0. (5)

Notice that

ẍ+ µẋ(x2 − 1) =
d

dt

[
ẋ+ µ

(
1

3
x3 − x

)]
.

Let

F (x) =
1

3
x3 − x (6)

and
w = ẋ+ µF (x). (7)

Then, using (6) and (7), we have

ẇ = ẍ+ µẋ(x2 − 1).

Substituting the van der Pol equation (5), this gives

ẇ = −x (8)

Now rearrange equation (7) to obtain

ẋ = w − µF (x) (9)
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We have thus parameterized the system by x and w. However we make one
more change of variable. Write

y = w/µ.

Then (8) and (9) become

ẋ = µ[y − F (x)] (10)

ẏ = −1

µ
x (11)

Now consider a trajectory in the x-y plane.

First, draw the nullcline for x, that is, the curve showing where ẋ = 0. This
is the cubic curve y = F (x).

Strogatz [1], Fig. 7.5.1

Note that the ẏ = 0 nullcline is the x = 0, i.e., the y-axis.

Now imagine a trajectory starting not too close to y = F (x), i.e.. suppose

y − F (x) ∼ 1.

Then from the equations of motion (10) and (11),

ẋ ∼ µ� 1

ẏ ∼ 1/µ� 1 assuming x ∼ 1.

Thus the horizontal velocity is large, the vertical velocity is small, and tra-
jectories move horizontally. Indeed the vertical velocity vanishes on the y-
nullcline (x = 0).
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Eventually the trajectory is so close to y = F (x) such that

y − F (x) ∼ 1

µ2

implying that

ẋ ∼ ẏ ∼ 1

µ
.

Thus the trajectory crosses the nullcline (vertically, since ẋ = 0 on the null-
cline).

Then ẋ changes sign, we still have ẋ ∼ ẏ ∼ 1/µ, and the trajectories crawl
slowly along the nullcline.

What happens at the knee (the minimum of F (x))?
The trajectories jump sideways again, as may be inferred from the symmetry
x→ −x, y → −y.

The trajectory closes to form the limit cycle.

Summary: The dynamics has two widely separated time scales:

• The crawls: ∆t ∼ µ (ẋ ∼ 1/µ)

• The jumps: ∆t ∼ 1/µ (ẋ ∼ µ)

Such systems are called slow-fast systems.

A time series of x(t) = θ(t) shows a classic relaxation oscillation:

Strogatz [1], Fig. 7.5.2

Relaxation oscillations are periodic processes with two time scales: a slow
buildup is followed by a fast discharge.
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Examples include

• stick-slip friction (earthquakes, avalanches, bowed violin strings, etc.)

• nerve cells, heart beats ( large literature in mathematical biology...)

1.5 A final note

Limit cycles exist only in nonlinear systems. Why?

A linear system ~̇x = A~x can have closed periodic orbits, but not an isolated
orbit.

That is, linearity requires that if ~x(t) is a solution, so is α~x(t), α 6= 0.

Thus the amplitude of a periodic cycle in a linear system depends on the
initial conditions.

The amplitude of a limit cycle, however, is independent of the initial condi-
tions.
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