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1 Conservation of volume in phase space

Reference: Tolman [1]

We show (via the example of the pendulum) that frictionless systems conserve
volumes (or areas) in phase space.

Conversely, we shall see, dissipative systems contract volumes.

Suppose we have a 3-D phase space, such that

ẋ1 = f1(x1, x2, x3)

ẋ2 = f2(x1, x2, x3)

ẋ3 = f3(x1, x2, x3)

or
d~x

dt
= ~f(~x)

The equations describe a flow, where d~x/dt is the velocity.

A set of initial conditions enclosed in a volume V flows to another position
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in phase space, where it occupies a volume V ′, neither necessarily the same
shape nor size:

ds
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Assume the volume V has surface S.

Let

• ρ = density of initial conditions in V ;

• ρ~f = rate of flow of points (trajectories emanating from initial condi-
tions) through unit area perpendicular to the direction of flow;

• ds = a small region of S; and

• ~n = the unit normal (outward) to ds.

Then

net flux of points out of S =

∫
S

(ρ~f · ~n)ds

or ∫
V

∂ρ

∂t
dV = −

∫
S

(ρ~f · ~n)ds

i.e., a positive flux =⇒ a loss of “mass.”

Now we apply the divergence theorem to convert the integral of the vector
field ρ~f on the surface S to a volume integral:∫

V

∂ρ

∂t
dV = −

∫
V

[~∇ · (ρ~f)]dV

Letting the volume V shrink, we have

∂ρ

∂t
= −~∇ · (ρ~f)
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Now follow the motion of V to V ′ in time δt:

V
V’

The boundary deforms, but it always contains the same points.

We wish to calculate dρ/dt, which is the rate of change of ρ as the volume
moves:

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂x1

dx1
dt

+
∂ρ

∂x2

dx2
dt

+
∂ρ

∂x3

dx3
dt

= −~∇ · (ρ~f) + (~∇ρ) · ~f

= −(~∇ρ) · ~f − ρ~∇ · ~f + (~∇ρ) · ~f

= −ρ~∇ · ~f.

Note that the number of points in V is

N = ρV.

Since points are neither created nor destroyed we must have

dN

dt
= V

dρ

dt
+ ρ

dV

dt
= 0.

Thus, by our previous result,

−ρV ~∇ · ~f = −ρdV

dt

or
1

V

dV

dt
= ~∇ · ~f

This is called the Lie derivative. We shall refer to it often in this class.

We next arrive at the following statements by example:
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• ~∇ · ~f = 0 ⇒ volumes in phase space are conserved. Characteristic of
conservative or Hamiltonian systems.

• ~∇ · ~f < 0⇒ dV/dt < 0⇒ volumes in phase space contract. Character-
istic of dissipative systems.

We use the example of the pendulum:

ẋ1 = f1(x1, x2) = x2

ẋ2 = f2(x1, x2) = −g
l

sinx1

Calculate
~∇ · ~f =

∂ẋ1
∂x1

+
∂ẋ2
∂x2

= 0 + 0

Pictorially

2

1

x

x

Note that the area is conserved.

Conservation of areas holds for all conserved systems. This is conventionally
derived from Hamiltonian mechanics and the canonical form of equations of
motion.

In conservative systems, the conservation of volumes in phase space is known
as Liouville’s theorem.

2 Damped oscillators and dissipative systems

References: Bergé et al. [2], Strogatz [3]
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2.1 General remarks

We have seen how conservative systems behave in phase space.
What about dissipative systems?

What is a fundamental difference between dissipative systems and conserva-
tive systems, aside from volume contraction and energy dissipation?

• Conservative systems are invariant under time reversal.

• Dissipative systems are not; they are irreversible.

Consider again the undamped pendulum:

d2θ

dt2
+ ω2 sin θ = 0.

Let t→ −t and thus ∂/∂t→ −∂/∂t.
There is no change—the equation is invariant under the transformation.

The fact that most systems are dissipative is obvious if we run a movie
backwards (ink drop, car crash, cigarette smoke...)

Dissipation therefore must arise in terms proportional to odd time derivatives;
i.e., terms that break time-reversal invariance.

In the linear approximation, the damped pendulum equation is

d2θ

dt2
+ γ

dθ

dt
+ ω2θ = 0

where

ω2 = g/l

γ = damping coefficient

The sign of γ is chosen so that positive damping opposes motion.

5



How does the energy evolve over time? As before, we calculate

kinetic energy =
1

2
ml2θ̇2

potential energy = mlg(1− cos θ) ' mlg

(
θ2

2

)
where we have assumed θ � 1 in the approximation.

Summing the kinetic and potential energies, we have

E(θ, θ̇) =
1

2
ml2

(
θ̇2 +

g

l
θ2
)

=
1

2
ml2(θ̇2 + ω2θ2)

Taking the time derivative,

dE

dt
=

1

2
ml2(2θ̇θ̈ + 2ω2θ̇θ)

Substituting the damped pendulum equation for θ̈,

dE

dt
= ml2[θ̇(−γθ̇ − ω2θ) + ω2θ̇θ]

= −ml2γθ̇2

Take ml2 = 1. Then
dE

dt
= −γθ̇2

Conclusion:

γ = 0 ⇒ Energy conserved (no friction)

γ > 0 ⇒ friction (energy is dissipated)

γ < 0 ⇒ energy increases without bound

2.2 Phase portrait of damped pendulum

Express the damped pendulum as

ẋ = θ̇ = y

ẏ = θ̈ = −γθ̇ − ω2 sin θ = −γy − ω2 sinx.
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In the linear approximation, we have(
ẋ

ẏ

)
=

(
0 1
−ω2 −γ

)(
x

y

)
.

The eigenvalues of the system are solutions of

(−λ)(−γ − λ) + ω2 = 0

Thus

λ = −γ
2
± 1

2

√
γ2 − 4ω2

Assume γ2 � ω2 (i.e., weak damping, small enough to allow oscillations).
Then the square root is complex, and we may approximate λ as

λ = −γ
2
± iω

The solutions are therefore exponentially damped oscillations of frequency ω:

θ(t) = θ0e
−γt/2 cos(ωt+ φ)

θ0 and φ derive from the initial conditions.

There are three generic cases:

• for γ > 0, trajectories spiral inwards and are stable.

θ

θ

• for γ = 0, trajectories are marginally stable periodic oscillations.

θ

θ
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• for γ > 0, trajectories spiral outwards and are unstable.

θ

θ

The physical case is the stable case. In the θ, θ̇-phase plane, the phase portrait
looks like this:

Strogatz [3], Fig. 6.7.7

It is obvious from the phase portraits that the damped pendulum contracts
areas in phase space:

θ

θ

We can quantify the contraction of areas using the Lie derivative,

1

V

dV

dt
= ~∇ · ~f,

which yields
∂ẋ

∂x
+
∂ẏ

∂y
= 0− γ = −γ < 0
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The inequality not only establishes area contraction, but γ gives the rate.

2.3 Summary

Finally, we summarize the characteristics of dissipative systems:

• Energy not conserved.

• Irreversible.

• Contraction of areas (volumes) in phase space.

Note that the contraction of areas is not necessarily simple.

In a 2-D phase space one might expect

θ

θ

time

However, we can also have

time

i.e., we can have expansion in one dimension and (a greater) contraction in
the other.

In 3-D the stretching and thinning can be even stranger!
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