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1 Pendulum

1.1 Free oscillator

The archetypal oscillatory dynamical system is the pendulum. We begin with
the unforced, undamped case.

l

mg

mgsinθ

θ

The arc length (displacement) between the pendulum’s current position and
rest position (θ = 0) is

s = lθ
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Therefore

ṡ = lθ̇

s̈ = lθ̈

From Newton’s 2nd law,
F = mlθ̈

The restoring force is given by −mg sin θ. (It acts in the direction opposite
to sgn(θ)). Thus

F = mlθ̈ = −mg sin θ

or
d2θ

dt2
+
g

l
sin θ = 0.

Our pendulum equation is idealized: it assumes, e.g., a point mass, a rigid
geometry, and most importantly, no friction.

The equation is nonlinear, because of the sin θ term. Thus the equation is
not easily solved.

However for small θ � 1 we have sin θ ' θ. Then

d2θ

dt2
= −g

l
θ

whose solution is

θ = θ0 cos

(√
g

l
t+ φ

)
or

θ = θ0 cos(ωt+ φ)

where the angular frequency is

ω =

√
g

l
,

the period is

T = 2π

√
l

g
,

and θ0 and φ come from the initial conditions.
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Note that the motion is exactly periodic.
Furthermore, the period T is independent of the amplitude θ0.
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1.2 Global view of dynamics

What do we need to know to completely describe the instantaneous state of
the pendulum?

The position θ and the velocity
dθ

dt
= θ̇.

Instead of integrating our o.d.e. for the pendulum, we seek a representation
of the solution in the plane of θ and θ̇.

Because the solution is periodic, we know that the resulting trajectory must
be closed:

θ

θ

In which direction is the flow?
What shape does the curve take?

To calculate the curve, we note that it should be characterized by constant
energy, since no energy is input to the system (it is not driven) and none is
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dissipated (there is no friction).

Therefore we compute the energy E(θ, θ̇), and expect the trajectories to be
curves of E(θ, θ̇) = const.

1.3 Energy in the plane pendulum

mg

 mgsinθ

θθl cos

h

l

The pendulum’s height above its rest position is h = l − l cos θ.
As before, s = arc length = lθ.

The kinetic energy T is

T =
1

2
mṡ2 =

1

2
m(lθ̇)2 =

1

2
ml2θ̇2

The potential energy U is

U = mgh = mg(l − l cos θ)

= mgl(1− cos θ)

Therefore the energy E(θ, θ̇) is

E(θ, θ̇) =
1

2
ml2θ̇2 +mgl(1− cos θ)

We check that E(θ, θ̇) is a constant of motion by calculating its time deriva-
tive:

dE

dt
=

1

2
ml2(2θ̇θ̈) +mglθ̇ sin θ

= ml2θ̇
(
θ̈ +

g

l
sin θ

)
= 0 (since the pend. eqn. θ̈ = −g

l
sin θ)
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So what do these curves look like?
Take θ0 to be the highest point of motion.

θ
0

Then
θ̇(θ0) = 0

and
E(θ0, θ̇ |θ0) = mgl(1− cos θ0)

Since cos θ = 1− 2 sin2(θ/2),

E(θ0, θ̇ |θ0) = 2mgl sin2

(
θ0
2

)
= E(θ, θ̇) in general, since E is conserved

Now write T = E − U :

1

2
ml2θ̇2 = 2mgl

(
sin2 θ0

2
− sin2 θ

2

)
(1)

θ̇2 = 4
g

l

(
sin2 θ0

2
− sin2 θ

2

)
(2)

For small θ0 such that θ � 1,

θ̇2 ' 4
g

l

(
θ20
4
− θ2

4

)
or (

θ̇√
g/l

)2

+ θ2 ' θ20

Thus for small θ the curves are circles of radius θ0 in the plane of θ and
θ̇/
√
g/l.
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θ

θ

/ (g/l)1/2

What about θ0 large?
Consider the case θ0 = π.

For θ0 = π, E = 2mgl, and equation (2) gives

θ̇2 = 4
g

l

[
sin2

(π
2

)
− sin2

(
θ

2

)]
= 4

g

l
cos2

(
θ

2

)
Thus for θ0 = π, the curves are the cosines

θ̇ = ±2

√
g

l
cos

(
θ

2

)
. (3)

−2 −1 0 1 2
−2

0

2

(d
θ
 /
 d

t)
 /
 (

g
 /
 l
)1

/2

θ / π

1.4 Phase portrait

Intuitively, we recognize that the cosines of equation (3) separate oscillatory
motion (E < 2mgl) from rotary motion (E > 2mgl).

Thus for undampled, nonlinear pendulum we can construct the following
phase portrait:
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The portrait is periodic.

The blue curves are the oscillatory solutions. They intersect the θ-axis at
±θ0, and are circles for small θ0. The period of motion is independent of θ0
in the circular case, otherwise the period grows with the amplitude.

The red curves are given by equation (3). The separate oscillatory from
rotary motion, which is indicated by the green curve.

In which direction do the closed trajectories flow (counterclockwise...). And
the others?

The points θ̇ = 0, θ = . . . ,−2π, 0, 2π, . . . are marginally stable fixed points.

The points θ̇ = 0, θ = . . . ,−3π,−π, π, 3π . . . are unstable fixed points.

The red trajectories appear to cross, but they do not. Why not?

If the trajectories actually arrive at these crossing points, the motion stops,
awaiting instability. But it takes an infinite time to arrive at these points.

2 Stability in two-dimensional systems

How can we address the question of stability in such two-dimensional sys-
tems?
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We proceed from the example of the pendulum equation. We reduce this
2nd-order ODE,

θ̈ +
g

l
sin θ = 0,

to two first order ODE’s.

Write x1 = θ, x2 = θ̇. Then

ẋ1 = x2

ẋ2 = −g
l

sinx1

The fixed points occur where

~̇x =

(
ẋ1
ẋ2

)
= ~0

For the pendulum, this requires

x2 = 0

x1 = ±nπ, n = 0, 1, 2, . . .

Since sin x1 is periodic, the only distinct fixed points are(
θ

θ̇

)
=

(
0
0

)
and

(
θ

θ̇

)
=

(
π

0

)
Intuitively, the first is stable and the second is not.
How may we be more precise?

2.1 Linear systems

Reference: Chapter 5, Strogatz [1].

Consider the problem in general. First, assume that we have the linear system

u̇1 = a11u1 + a12u2

u̇2 = a21u1 + a22u2

or
~̇u = A~u

8



with

~u(t) =

(
u1(t)
u2(t)

)
and A =

(
a11 a12
a21 a22

)
Assume A has an inverse and that its eigenvalues are distinct.
Then the only fixed point (where ~̇u = 0) is ~u = 0.

The solution, in general, is

~u(t) = α1e
λ1t~c1 + α2e

λ2t~c2

where

• λ1, λ2 are eigenvalues of A.

• ~c1, ~c2 are eigenvectors of A.

• α1 and α2 are constants (deriving from initial conditions).

Recall that the eigenvalues λ of A solve the characteristic equation

det

(
a11 − λ a12
a21 a22 − λ

)
= 0

which may be written as
λ2 − τλ+ ∆ = 0

where

τ = trace(A) = a11 + a22

∆ = det(A) = a11a22 − a12a21.

Then

λ1,2 =
τ ±
√
τ 2 − 4∆

2
.

The eigenvectors ~c solve
A~c = λ~c.

What are the possibilities for stability?

1. λ1 and λ2 are both real.
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(a) If λ1 < 0 and λ2 < 0, then u(t)→ 0 as t→∞.
⇒ stable node.

u
2

u
1

(b) If λ1 > 0 and λ2 > 0, then u(t)→∞ as t→∞.
⇒ unstable node.

u
2

u
1

Although the above plots make the basic point, they skip over a de-
tail: the difference between fast and slow eigendirections. Here’s a
more detailed view of a stable node, with λ2 < λ1 < 0:

 

U2
stegendirection

É

u

I f I fast
eigendirectin

Note that the trajectories eventually become parallel to the slow
eigendirection (associated with λ1).

In the unstable case, the arrows are reversed (as if we simply reversed
time t → −∞) and the trajectories become parallel to the fast
eigendirection.

(c) If λ1 < 0 < λ2,
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• If ~u(0) is a multiple of ~c1, then u(t)→ 0 as t→∞.

• If ~u(0) is a multiple of ~c2, then u(t)→∞ as t→∞.

⇒ unstable saddle.
u

2

u
1

c
2

c
1

2. λ1, λ2 are both complex. Then

λ = σ ± iq.

Assuming ~u(t) is real,

~u(t) = eσt(~β1 cos qt+ ~β2 sin qt)

( ~β1, ~β2 are formed from a linear combination of A’s eigenvectors and the initial conditions).

There are three possibilities:

(a) Re{λ} = σ > 0 =⇒ unstable.
u

2

u
1

(b) σ < 0 =⇒ stable.
u

2

u
1

11



(c) σ = 0 =⇒ marginally stable, or a center.
u

2

u
1

The analysis above assumes the usual case of distinct eigenvalues in which
λ1 6= λ2.

The case where λ1 = λ2 and there is only one eigenvector can be thought of
as a limiting case of the fast and slow eigendirections pictured above; it is as
if the two eigendirections act as a scissor that closes:

Strogatz [1], Fig. 5.2.7

Such a node is called degenerate. The case above is stable; the unstable case
would have the trajectories reversed.

The case with two eigenvectors yields either stars (nodes with rays emanating
from or converging to the origin) or non-isolated fixed points. See Strogatz [1]
for details.

2.2 Classification scheme

All of the cases in the previous section can be conveniently classified in terms
of the trace τ and determinant ∆ of the matrix A. We have

λ1,2 =
τ ±
√
τ 2 − 4∆

2
, ∆ = λ1λ2, τ = λ1 + λ2
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In graphical form, we have

Strogatz [1], Fig. 5.2.8

2.3 Nonlinear systems

We are interested in the qualitative behavior of systems like

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

where f1 and f2 are nonlinear functions of x1 and x2.

Suppose

(
x∗1
x∗2

)
is a fixed point. Is it stable?

Define ui = xi − x∗i to be a small departure from the fixed point.

As we did with one dimensional systems, we expand the system around the
fixed point:

fi(x1, x2) = fi(x
∗
1, x
∗
2) + u1

∂fi
∂x1

∣∣∣∣
x∗1,x

∗
2

+ u2
∂fi
∂x2

∣∣∣∣
x∗1,x

∗
2

+O(u2).

The first term vanishes since it is evaluated at the fixed point.

Also, since
ui = xi − x∗i
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we have
u̇i = ẋi = fi(x1, x2)

Substituting u̇i = fi(x1, x2) above, we obtain

~̇u ' A~u

where

A =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


∣∣∣∣∣∣∣
~x=~x∗

A is the Jacobian matrix of f at ~x∗.

We now apply these results to the pendulum. We have

ẋ1 = f1(x1, x2) = x2

ẋ2 = f2(x1, x2) = −g
l

sinx1

and

A =

(
0 1
−g/l 0

)
for

(
x∗1
x∗2

)
=

(
0
0

)

There is a different A for the case

(
x∗1
x∗2

)
=

(
π

0

)
. (The sign of g/l changes.)

The question of stability is then addressed just as in the linear case, via
calculation of the eigenvalues (or the trace and determinant) of the Jacobian.
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