Lecture notes for 12.006J/18.353J/2.050J, Nonlinear Dynamics: Chaos

D. H. Rothman, MIT December 5, 2022

Contents

1		ermittency (and quasiperiodicity)	1
	1.1	General characteristics of intermittency	3
	1.2	One-dimensional map	4
	1.3	Average duration of laminar phase	7
	1.4	Lyapunov number	8
	1.5	Quasiperiodicity	10
		1.5.1 An historical note	10
		1.5.2 Ruelle-Takens theory	11

1 Intermittency (and quasiperiodicity)

References: Bergé et al. [1], Pomeau and Manneville [2]

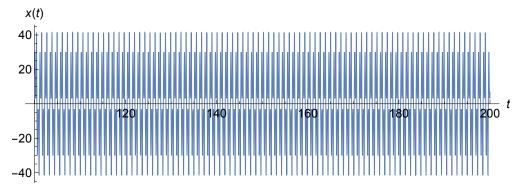
In this lecture we discuss the other two generic routes to chaos, intermittency and quasiperiodicity.

Almost all our remarks will be on intermittency; we close with a brief description of quasiperiodicity.

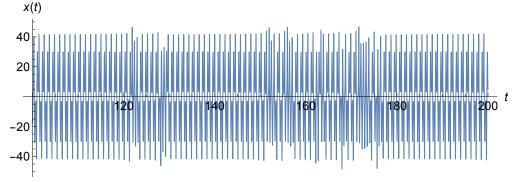
Definition: Intermittency is the occurrence of a signal that alternates randomly between regular (laminar) phases and relatively short irregular bursts.

In the exercises we have already seen examples, particulary in the Lorenz model (where it was discovered, by Manneville and Pomeau).

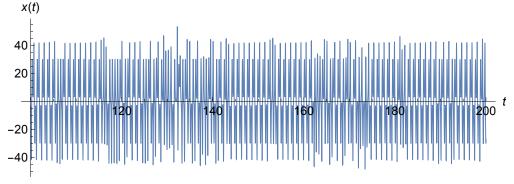
Here it is in the Lorenz model. First, at r = 166, there is a stable limit cycle:



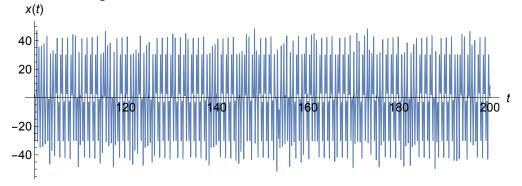
At r = 166.1, there are occasional bursts:



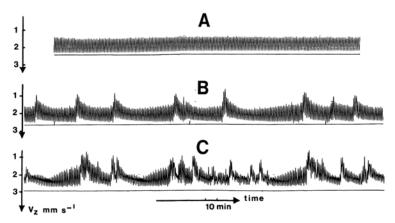
The bursts become more frequent at r = 166.3:



And still more frequent at r = 167:



Here is the same phenomena in Rayleigh-Bénard convection experiments:



© EDP Sciences. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Berg é et al. [3], Fig. 1

Here, Ra/Ra_c is 270, 300, and 335 in A, B, and C, respectively.

1.1 General characteristics of intermittency

Let r = control parameter. The following summarizes the behavior with respect to r:

- For $r < r_i$, system displays stable oscillations (e.g., a limit cycle).
- For $r > r_i$ $(r r_i \text{ small})$, system is in the *intermittent* regime: stable oscillations are interrupted by fluctuations.
- As $r \to r_i$ from above, the fluctuations become increasingly rare, and disappear for $r < r_i$.
- Only the *average intermission time* between fluctuations varies, not their amplitude nor their duration.

We seek theories for

- Linear stability of the limit cycle and "relaminarization." (i.e. return to stability after irregular bursts).
- Scaling law for intermission times.
- Scaling law for Lyapunov exponents.

1.2 One-dimensional map

We consider the instability of a Poincaré map due to the crossing of the unit circle at (+1) by an eigenvalue of the Floquet matrix.

This corresponds to the specific case of Type I intermittency.

Let u be the coordinate in the plane of the Poincaré section that points in the direction of the eigenvector whose eigenvalue λ crosses +1.

The lowest-order approximation of the 1-D map constructed along this line is

$$u' = \lambda(r)u. \tag{1}$$

Taking $\lambda(r_i) = 1$ at the intermittency threshold, we have

$$u' = \lambda(r_i)u = u. (2)$$

We consider this to be the leading term of a Taylor series expansion of u'(u, r) in the neighborhood of u = 0 and $r = r_i$.

Expand to first order in $(r - r_i)$ and second order in u:

$$u'(u,r) \simeq u'(0,r_i) + u \cdot \frac{\partial u'}{\partial u} \bigg|_{0,r_i} + \frac{1}{2}u^2 \cdot \frac{\partial^2 u'}{\partial u^2} \bigg|_{0,r_i} + (r - r_i) \left. \frac{\partial u'}{\partial r} \right|_{0,r_i}$$

Evaluating equation (1), we find that the first term vanishes:

$$u'(u = 0, r = r_i) = 0.$$

From equation (2), we have

$$\left. \frac{\partial u'}{\partial u} \right|_{0,r_i} = \lambda(r_i) = 1.$$

Finally, rescale u such that

$$\frac{1}{2} \left. \frac{\partial^2 u'}{\partial u^2} \right|_{0,r_i} = 1$$

and set

$$\varepsilon \propto (r - r_i)$$
.

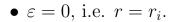
The model now reads

$$u' = u + \varepsilon + u^2,$$

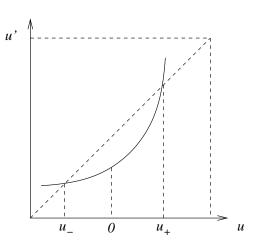
where ε is now the control parameter.

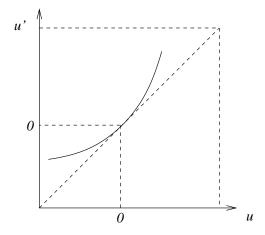
Graphically, we have the following system:

- $\varepsilon < 0$, i.e. $r < r_i$.
- u_{-} is stable fixed point.
- u_+ is unstable.



- u' is tangent to identity map.
- $u_- = u_+ = 0$ is marginally stable.



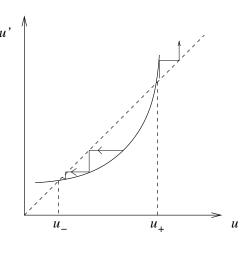


u' A

- $\varepsilon > 0$, i.e. $r > r_i$.
- no fixed points.

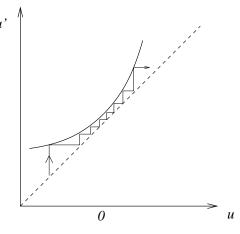
For $\varepsilon < 0$, the iterations look like

- u_{-} is an attractor for initial conditions $u < u_{+}$.
- For initial conditions $u > u_+$, the iterations diverge.



The situation changes for $\varepsilon > 0$, i.e. $r > r_i$:

- No fixed points.
- Iterations beginning at u < 0 drift towards u > 0.



The fixed points of u'(u) represent stable oscillations of the continuous flow.

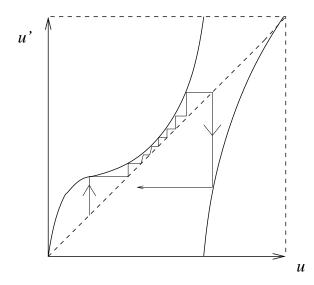
Thus for $u \simeq 0$, the drift for $\varepsilon > 0$ corresponds to a flow qualitatively similar to the stable oscillations near u = 0 for $\varepsilon < 0$.

However, when $\varepsilon > 0$, there is no fixed point, and thus no periodic solution.

The iterations eventually run away and become unstable—this is the *inter-mittent* burst of noise.

How does the laminar phase begin again, or "relaminarize"?

Qualitatively, the picture can look like



Note that the precise timing of the turbulent burst is unpredictable.

The discontinuity is *not* inconsistent with the presumed continuity of the underlying equations of motion—this is a map, not a flow.

Moreover the Lorenz map itself contains a discontinuity, corresponding to the location of the unstable fixed point.

1.3 Average duration of laminar phase

What can we say about the average duration of the laminar phases?

Writing our theoretical model as a map indexed by k, we have

$$u_{k+1} = u_k + \varepsilon + u_k^2.$$

For $u_{k+1} \simeq u_k$, we can instead write the differential equation

$$\frac{\mathrm{d}u}{\mathrm{d}k} = \varepsilon + u^2.$$

The general solution of this o.d.e. is

$$u(k) = \varepsilon^{1/2} \tan \left[\varepsilon^{1/2} (k - k_0) \right].$$

Take $k_0 = 0$, the step at which iterations traverse the narrowest part of the channel.

We thus have

$$u(k) = \varepsilon^{1/2} \tan \left(\varepsilon^{1/2} k \right).$$

We see that u(k) diverges when

$$\varepsilon^{1/2}k = \pm \frac{\pi}{2}$$
 or $k = \pm \frac{\pi}{2}\varepsilon^{-1/2}$.

The divergence signifies a turbulent burst.

When $k \sim \varepsilon^{-1/2}$, $u_{k+1} - u_k$ is no longer small, and the differential approximation of the difference equation is no longer valid.

Thus: if $\tau = \text{time } (\propto \text{ number of iterations})$ needed to traverse the channel, then

$$\tau \propto \varepsilon^{-1/2}$$
 or $\tau \propto (r - r_i)^{-1/2}$. (3)

Thus the laminar phase lasts increasingly long as the threshold $r = r_i$ is approached from above.

1.4 Lyapunov number

We can also predict a scaling law for the Lyapunov number.

Near the fixed point $(u \simeq 0, \varepsilon > 0)$, the increment δu_{k+1} due to an increment δu_k is, to first order,

$$\delta u_{k+1} \simeq \lambda_1 \delta u_k$$

where λ_1 is eigenvalue that passes through (+1).

After N iterations,

$$\delta u_N \simeq \lambda_N \lambda_{N-1} \lambda_{N-2} \cdots \lambda_1 \delta u_1.$$

Suppose $N \simeq$ the duration of the laminar phase. Then

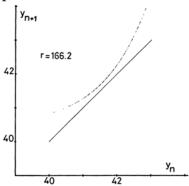
$$\lambda_N > 1$$
 and $\lambda_{N-1} \simeq \lambda_{N-2} \simeq \cdots \simeq \lambda_1 \simeq 1$.

The Lyapunov number Λ is

$$\Lambda = rac{1}{N} \prod_i \lambda_i \simeq rac{\lambda_N}{N} \propto rac{1}{N} \propto rac{1}{ au} \propto \sqrt{arepsilon}.$$

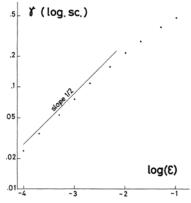
where the last relation used equation (3). (Recall that $\ln f = Lyapun ov exponent$.)

Results from the Lorenz model verify this prediction. The "intermittent channel" of the Lorenz map is seen here:



Pomeau and Manneville [2], Fig. 2

And here is the associated $\varepsilon^{1/2}$ scaling of the Lyapunov number:



Pomeau and Manneville [2], Fig. 9

Both images on this page © Springer Nature Switzerland AG. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

1.5 Quasiperiodicity

Finally, we make a few remarks about the third universal route to chaos, known as *quasiperiodicity*.

Recall that there are 3 generic ways in which a limit cycle on a Poincaré map may become unstable: An eigenvalue λ of the Floquet matrix (the Jacobian of the map) crosses the unit circle at

- \bullet +1 (as in the example of intermittency above);
- \bullet -1 (as we saw in the introduction to period doubling); and
- $\lambda = \alpha \pm i\beta$, $|\lambda| > 1$. This corresponds to the transition via quasiperiodicity.

As we have seen, the latter case results in the addition of a second oscillation.

This is a *Hopf bifurcation*: the transformation of a limit cycle to a quasiperiodic flow, or a torus T^2 .

The route to chaos via quasiperiodicity describes how a torus T^2 (i.e., a quasiperiodic flow) can become a strange attractor.

1.5.1 An historical note

In 1944, the Russian physicist Landau proposed a theory for the transition from laminar flow to turbulence as the Reynolds number is increased.

Briefly, he envisioned the following sequence of events as Re increases beyond Re_c :

- Laminar flow (constant velocity) becomes periodic with frequency f_1 by a Hopf bifurcation.
- Period flow \rightarrow quasiperiodic flow; i.e., another Hopf bifurcation. The second frequency f_2 is incommensurate with f_1 .

- More incommensurate frequencies f_3, f_4, \ldots, f_r appear in succession (due to more Hopf bifurcations).
- For r large, the spectrum appears continuous and the flow (on a torus T^r) is aperiodic (i.e., turbulent).

Recall that we have learned previously that, for dissipative flows,

dimension of phase space > attractor dimension.

Thus a consequence of Landau's theory is that a system must have many degrees of freedom to become chaotic.

We now know, however, from the work of Lorenz, that

- 3 degrees of freedom suffice to give rise to a chaotic flow; and
- the chaos occurs on a strange attractor, which is distinct from a torus (since trajectories diverge on the strange attractor).

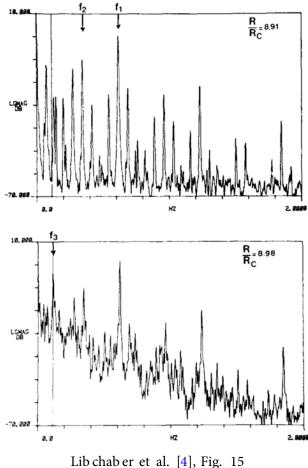
1.5.2 Ruelle-Takens theory

Lorenz's observations were deduced theoretically by Ruelle and Takens in 1971.

The Ruelle-Takens theory is the *quasiperiodic* route to chaos. As a control parameter is varied, the following sequence of events can occur:

- Laminar flow \rightarrow oscillation with frequency f_1 .
- A second Hopf bifurcation adds a second (incommensurate) frequency f_2 .
- A third Hopf bifurcation adds a third frequency f_3 .
- ullet The torus T^3 can become unstable and be replaced by a strange attractor.

The transition is demonstrated beautifully in terms of changing power spectra in the Rayleigh-Bénard experiment described by Libchaber et al. [4]



Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Note that the Rayleigh number of the two spectra varies by less than 1%.

References

- 1. Bergé, P., Pomeau, Y. & Vidal, C. Order within Chaos: Towards a Deterministic Approach to Turbulence (John Wiley and Sons, New York, 1984).
- 2. Pomeau, Y. & Manneville, P. Intermittent transition to turbulence in dissipative dynamical systems. *Communications in Mathematical Physics* **74**, 189–197 (1980).
- 3. Bergé, P., Dubois, M., Manneville, P. & Pomeau, Y. Intermittency in Rayleigh-Bénard convection. *Journal de Physique Lettres* **41**, 341–345 (1980).

4. Libchaber, A., Fauve, S. & Laroche, C. Two-parameter study of the routes to chaos. *Physica D: Nonlinear Phenomena* **7**, 73–84 (1983).

12.006J/18.353J/2.050J Nonlinear Dynamics: Chaos Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.