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1 Lyapunov exponents

References: [1, 2]

Whereas fractals quantify the geometry of strange attractors, Lyaponov ex-
ponents quantify their sensitivity to initial conditions.

In this lecture we broadly sketch some of the mathematical foundations of
Lyaponov exponents. We also briefly describe how they are obtained numer-
ically.

We conclude by showing how both fractals and Lyaponov exponents manifest
themselves in a simple model.

1.1 Sensitivity to initial conditions in a chemical reaction

We begin by showing how the tools we have developed thus far allow us to
visualize sensitivity to initial conditions in time series data.
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We consider data obtained in a nonlinear chemical reaction known as the
Belousov-Zhabotinsky reaction [3]. Here the essential control parameter is
the rate at which reactants flow into a reactor, and the time series obtained
measures the instantaneous concentrations of certain species.

For certain values of the flow rate, the time series appears quasiperiodic but
its spectrum is broad. Phase space reconstruction by the method of delays
yields a picture like this:

References [1, 3]

Now let’s follow all trajectories that come very close to the lower left-corner
of the plot (O), and watch how they spread for equal amounts of additional
time (A, B, and C):

References [1, 3]
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We proceed to show how why, in general, the divergence of trajectories is
exponential.

1.2 Diverging trajectories

Lyapunov exponents measure the rate of divergence of trajectories on an
attractor.

Consider a flow ~φ(t) in phase space, given by

dφ

dt
= ~F (~φ)

If instead of initiating the flow at ~φ(0), it is initiated at ~φ(0)+ε(0), sensitivity
to initial conditions would produce a divergent trajectory:

φ(0) φ(

ε(0)

ε( t)

t)

Here |~ε| grows with time. To first order,

d(~φ+ ~ε)

dt
' ~F (~φ) +M(t) ~ε

where

Mij(t) =
∂Fi
∂φj

∣∣∣∣
~φ(t)

.

We thus find that
d~ε

dt
= M(t) ~ε. (1)

Consider the example of the Lorenz model. The Jacobian M is given by

M(t) =

 −P P 0
−Z(t) + r −1 −X(t)
Y (t) X(t) −b

 .
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The sensitivity to initial conditions is obvious.



We cannot solve for ~ε because of the unknown time dependence of M(t).
However one may numerically solve for ~φ(t), and thus ~ε(t), to obtain (for-
mally)

~ε(t) = L(t) ~ε(0).

1.3 Example 1: time-independent Jacobian

Consider a simple 3-D example in which M is time-independent.

Assume additionally that the phase space coordinates correspond to M ’s
eigenvectors.

Then M is diagonal and

L(t) =

 eλ1t 0 0
0 eλ2t 0
0 0 eλ3t


where the λi are the eigenvalues of M . (Recall that if ~̇ε = M~ε, then ~ε(t) = eMt~ε(0),

where, in the coordinate system of the eigenvectors, eMt = L(t).)

As t increases, the eigenvalue with the largest real part dominates the flow
~ε(t).

To express this formally, let L∗ be the conjugate (Hermitian) transpose of L,
i.e.

L∗ij = Lji.

Also let
Tr(L) = diagonal sum =

∑
i=j

Lij.

Then
Tr[L∗(t)L(t)] = e(λ1+λ

∗
1)t + e(λ2+λ

∗
2)t + e(λ3+λ

∗
3)t

Define

λ = lim
t→∞

1

2t
ln

(
Tr[L∗(t)L(t)]

)
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λ is the largest Lyapunov exponent. Its sign is crucial:

λ < 0 =⇒ ε(t) decays exponentially

λ > 0 =⇒ ε(t) grows exponentially.

1.4 Example 2: time-dependent eigenvalues

Now suppose that M(t) varies with time in such a way that only its eigen-
values, but not its eigenvectors, vary.

Let

~φ =

 X(t)
Y (t)
Z(t)


and consider small displacements δX(t), δY (t), δZ(t) in the reference frame
of the eigenvectors.

Then, analogous to equation (1), and again assuming that phase space coor-
dinates correspond to M ’s eigenvectors, δẊ(t)

δẎ (t)

δŻ(t)

 =

 A[φ(t)] 0 0
0 B[φ(t)] 0
0 0 C[φ(t)]

 δX(t)
δY (t)
δZ(t)

 .
Here A,B,C are the time-dependent eigenvalues (assumed to be real).

The solution for δX(t) is

δX(t) = δX(0) exp

[∫ t

0

dt′A[φ(t′)]

]
Rearranging and dividing by t,

1

t
ln

∣∣∣∣ δX(t)

δX(0)

∣∣∣∣ =
1

t

∫ t

0

dt′A[φ(t′)]

The RHS represents the time-average of the eigenvalue A. We assume that
for sufficiently long times this average is equivalent to an average of A for all
possible flows φ evaluated at the same time.
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In other words, we assume that the flow is ergodic.

We denote this average by angle brackets:

〈A〉 = φ-average of A[φ(t)]

= time-average of A[φ(t)]

= lim
t→∞

1

t

∫ t

0

dt′A[φ(t′)]

= lim
t→∞

1

t
ln

∣∣∣∣ δX(t)

δX(0)

∣∣∣∣
〈A〉 is one of the three Lyapunov exponents for φ(t).

More sophisticated analyses show that the theory sketched above applies to
the general case in which both eigenvectors and eigenvalues vary with time.

1.5 Numerical evaluation

Lyaponov exponents are almost always evaluated numerically.

The most obvious method is the one used in the problem sets: For some ~ε(0),
numerically evaluate ~ε(t), and then find λ such that

|~ε(t)| ' |~ε(0)|eλt.

This corresponds to the definition of 〈A〉 above.

A better method avoids saturation at the size of the attractor by successively
averaging small changes over the same trajectory:

ε(0)

φ(0)
φ( τ)

φ( 2τ)

ε(2τ)
ε(τ)
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Here ~ε is renormalized at each step such that

~ε(τ) = ~ε(0)eγ1τ

~ε(2τ) =
~ε(τ)

|~ε(τ)|
eγ2τ

The largest Lyaponov exponent is given by the long-time average:

λ = lim
n→∞

1

n

n∑
i=1

γi = lim
n→∞

1

nτ

n∑
i

ln |~ε(iτ)|

Experimental data poses greater challenges, because generally we have only
a single time series X(t).

One way is to compare two intervals on X(t), say

[t1, t2] and [t′1, t
′
2],

where X(t) is nearly the same on both intervals.

Then the comparison of X(t) beyond t2 and t′2 may yield the largest Lyaponov
exponent.

Another way is indicated in Section 1.1: after reconstruction of phase space
by, say, the method of delays, all trajectories that pass near a certain point
may be compared to see the rate at which they diverge.

1.6 Lyaponov exponents and attractors in 3-D

Consider an attractor in a 3-D phase space. There are 3 Lyaponov exponents.

Their signs depend on the type of attractor:

Type Signs of Lyapunov exponents

Fixed point (−,−,−)
Limit cycle (−,−, 0)
Torus T 2 (−, 0, 0)
Strange attractor (−, 0,+)
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If the attractor is a fixed point, all three exponents are negative.

If it is a limit cycle with one frequency, only two are negative, and the third
is zero. The zero-exponent corresponds to the direction of flow—which can
neither be expanding nor contracting.

Of the other cases in the table below, the most interesting is that of a strange
attractor:

• The largest exponent is, by definition, positive.

• There must also be a zero-exponent corresponding to the flow direction.

• The smallest exponent must be negative—and of greater magnitude than
the largest, since volumes must be contracting.

1.7 Smale’s horseshoe attractor

We have seen that

• Lyaponov exponents measure “stretching.”

• Fractal dimensions measure “folding.”

Smale’s horseshoe attractor exemplifies both, and allows easy quantification.

Start with a rectangle:

A B

DC

Stretch by a factor of 2; squash by a factor of 1/(2η), η > 1:
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A’ B’

C’ D’

Now fold like a horseshoe and put back in ABCD:

1/2η

1/2η

A B

DC

Now iterate the process. Stretch and squash:

Fold and place back in ABCD:

1/(2η)2

A B

DC

Each dimension is successively scaled by its own multiplier, called a Lyaponov
number:

Λ1 = 2 (x− stretch)

Λ2 =
1

2η
(y − squash)

Area contraction is given by

Λ1Λ2 = 1/η.
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The Lyapunov exponents are

λ1 = ln Λ1

λ2 = ln Λ2

Note also that vertical cuts through the attractor appear as the early itera-
tions of a Cantor set.

To obtain the fractal dimension, we use the definition

D = lim
ε→0

lnN(ε)

ln(1/ε)
.

Taking the initial box height to be unity, the ε,N pairs for the number N of
segments of length ε required to cover the attractor is

ε N

1 1
1/(2η) 2
1/(2η)2 4
. . . . . .

1/(2η)m 2m

Therefore the dimension D of the Cantor set is

D =
ln 2

ln 2η
.

The dimension D′ of the attractor in the plane ABCD is

D′ = 1 +
ln 2

ln 2η
,

where we have neglected the “bend” in the horseshoe (i.e., we’ve assumed
the box’s width is much greater than its height.

Note that,
as η → 1, D′ → 2,

because iterates nearly fill the plane. Conversely,

as η →∞, D′ → 1,

meaning that the attractor is nearly squashed to a simple line.
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1. Bergé, P., Pomeau, Y. & Vidal, C. Order within Chaos: Towards a De-
terministic Approach to Turbulence (John Wiley and Sons, New York,
1984).

2. Strogatz, S. Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering (CRC Press, 2018).

3. Roux, J. & Swinney, H. L. in Nonlinear Phenomena in Chemical Dynam-
ics 38–43 (Springer, 1981).

11



 

 
 

MIT OpenCourseWare
https://ocw.mit.edu 

12.006J/18.353J/2.050J Nonlinear Dynamics: Chaos
Fall 2022 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Lyapunov exponents
	Sensitivity to initial conditions in a chemical reaction
	Diverging trajectories
	Example 1: time-independent Jacobian
	Example 2: time-dependent eigenvalues
	Numerical evaluation
	Lyaponov exponents and attractors in 3-D
	Smale's horseshoe attractor




