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1.1 The Hénon map . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . 5

1 Hénon attractor

References: [1–3]

The chaotic phenomena of the Lorenz equations may be exhibited by even
simpler systems.

We now consider a discrete-time, 2-D mapping of the plane into itself. The
points in R2 are considered to be the the Poincaré section of a flow in higher
dimensions, say, R3.

The restriction that d > 2 for a strange attractor does not apply, because
maps generate discrete points; thus the flow is not restricted by continuity
(i.e., lines of points need not be parallel).

1.1 The Hénon map

The discrete time, 2-D mapping of Hénon is

Xk+1 = Yk + 1− αX2
k

Yk+1 = βXk
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• α controls the nonlinearity.

• β controls the dissipation.

Pictorially, we may consider a set of initial conditions given by an ellipse:

X

Y

Now bend the elllipse, but preserve the area inside it (we shall soon quantify
area preservation):

Map T1 : X ′ = X

Y ′ = 1− αX2 + Y
X’

Y’

Next, contract in the x-direction (|β| < 1)

Map T2 : X ′′ = βX ′

Y ′′ = Y ′
X ’’

Y’’

Finally, reorient along the x axis (i.e. flip across the diagonal).

Map T3 : X ′′′ = Y ′′

Y ′′′ = X ′′
X ’’’

Y’’’
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The composite of these maps is

T = T3 ◦ T2 ◦ T1.

We readily find that T is the Hénon map:

X ′′′ = 1− αX2 + Y

Y ′′′ = βX

1.2 Dissipation

The rate of dissipation may be quantified directly from the mapping via the
Jacobian.

We write the map as

Xk+1 = f(Xk, Yk)

Yk+1 = g(Xk, Yk)

Infinitesimal changes in mapped quantities as a function of infinitesimal
changes in inputs follow

df =
∂f

∂Xk
dXk +

∂f

∂Yk
dYk

We may approximate, to first order, the increment ∆Xk+1 due to small in-
crements (∆Xk,∆Yk) as

∆Xk+1 '
∂f

∂Xk
∆Xk +

∂f

∂Yk
∆Yk

When (∆Xk,∆Yk) are perturbations about a point (x0, y0), we have, to first
order, [

∆Xk+1

∆Yk+1

]
=

[
f ′Xk

(x0, y0) f ′Yk
(x0, y0)

g′Xk
(x0, y0) g′Yk

(x0, y0)

] [
∆Xk

∆Yk

]
.

Rewrite simply as [
∆x′

∆y′

]
=

[
a b

c d

] [
∆x
∆y

]
.
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Geometrically, this system describes the transformation of a rectangular area
determined by the vertex (∆x,∆y) to a parallelogram as follows:

x

y

∆ y

∆ x

∆ y

∆ x

∆ x ∆ y(

∆ x ∆ y(
(b,d)

x

y
,

(a,c)

),

’)’

Here we have taken account of transformations like

(∆x, 0) → (a∆x, c∆x)

(0,∆y) → (b∆y, d∆y)

If the original rectangle has unit area (i.e., ∆x∆y = 1), then the area of the
parallelogram is given by the magnitude of the cross product of (a, c) and
(b, d), or, in general, the Jacobian determinant

J =

∣∣∣∣ a b

c d

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∂Xk+1

∂Xk

∂Xk+1

∂Yk

∂Yk+1

∂Xk

∂Yk+1

∂Yk

∣∣∣∣∣∣∣∣∣
(x0,y0)

Therefore

|J | > 1 =⇒ dilation

|J | < 1 =⇒ contraction

For the Hénon map,

J =

∣∣∣∣ −2αXk 1
β 0

∣∣∣∣ = −β

Thus areas are multipled at each iteration by |β|.

After k iterations of the map, an initial area a0 becomes

ak = a0|β|k.
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1.3 Numerical simulations

Hénon chose α = 1.4, β = 0.3. The dissipation is thus considerably less than
the factor of 10−6 in the Lorenz model.

The attractor:
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Sensitivity to initial conditions:
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The weak dissipation allows one to see the fractal structure induced by the
repetitive folding:
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Note the apparent scale-invariance: at each magnification of scale, we see
that the upper line is composed of 3 separate lines.

The fractal dimension D = 1.26. (We shall soon discuss how this is com-
puted.)

The action of the Hénon map near the attractor is evident in the deformation
of a small circle of initial conditions on the attractor:

Ref. [2], Figure VI.22

The circle stretches in one dimension, by a factor Λ1, and is compressed in
the other, by a factor Λ2. While we don’t know Λ1 and Λ2, we do know their
product: Λ1Λ2 = β.

The larger of the two Λ’s is related to the exponential rate at which the
separation of two initial conditions grows.

At the larger scale of the attractor itself (A), we can see the combined effects
of stretching and folding (B and C):

Ref. [2], Figure VI.23
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