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1 Poincaré sections

The dynamical systems we study are of the form

d

dt
~x(t) = F (~x, t)

Systems of such equations describe a flow in phase space.

The solution is often studied by considering the trajectories of such flows.

But the phase trajectory is itself often difficult to determine, if for no other
reason than that the dimensionality of the phase space is too large.
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Thus we seek a geometric depiction of the trajectories in a lower-dimensional
space—in essence, a view of phase space without all the detail.

1.1 Construction of Poincaré sections

Suppose we have a 3-D flow Γ. Instead of directly studying the flow in 3-D,
consider, e.g., its intersection with a plane (x3 = h):
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• Points of intersection correspond (in this case) to ẋ3 < 0 on Γ.

• Height h of plane S is chosen so that Γ continually crosses S.

• The points P0, P1, P2 form the 2-D Poincaré section.

The Poincaré section is a continuous mapping T of the plane S onto itself:

Pk+1 = T (Pk) = T [T (Pk−1)] = T 2(Pk−1) = . . .

Since the flow is deterministic, P0 determines P1, P1 determines P2, etc.

The Poincaré section reduces a continuous flow to a discrete-time mapping.
However the time interval from point to point is not necessarily constant.

We expect some geometric properties of the flow and the Poincaré section to
be the same:
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• Dissipation ⇒ areas in the Poincaré section should contract.

• If the flow has an attractor, we should see it in the Poincaré section.

Essentially the Poincaré section provides a means to visualize an otherwise
messy, possibly aperiodic, attractor.

1.2 Types of Poincaré sections

As we did with power spectra, we classify three types of flows: periodic,
quasiperiodic, and aperiodic.

1.2.1 Periodic

The flow is a closed orbit (e.g., a limit cycle):

P
0

P0 is a fixed point of the Poincaré map:

P0 = T (P0) = T 2(P0) = . . . .

We proceed to analyze the stability of the fixed point.

To first order, a Poincaré map T can be described by a matrix M defined in
the neighborhood of P0:

Mij =
∂Ti
∂xj

∣∣∣∣
P0

.

In this context, M is called a Floquet matrix. It describes how a point P0 + δ

moves after one intersection of the Poincaré map.
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A Taylor expansion about the fixed point yields:

Ti(P0 + δ) ' Ti(P0) +
∂Ti
∂x1

∣∣∣∣
P0

· δ1 +
∂Ti
∂x2

∣∣∣∣
P0

· δ2, i = 1, 2

Since T (P0) = P0,
T (P0 + δ) ' P0 +Mδ

Therefore

T

(
T (P0 + δ)

)
' T (P0 +Mδ)

' T (P0) +M 2δ

' P0 +M 2δ

After m interations of the map,

Tm(P0 + δ)− P0 'Mmδ.

Stability therefore depends on the properties of M .

Assume that δ is an eigenvector of M . (There will always be a projection onto an

eigenvector.) Then
Mmδ = λmδ,

where λ is the corresponding eigenvalue.

Therefore

|λ| < 1 ⇒ linearly stable

|λ| > 1 ⇒ linearly unstable

Conclusion: a periodic map is unstable if one of the eigenvalues of the Floquet
matrix crosses the unit circle in the complex plane.

1.2.2 Quasiperiodic flows

Consider a 3-D flow with two fundamental frequencies f1 and f2. The flow is
a torus T 2:
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The points of intersection of the flow with the plane S appear on a closed
curve C.

As with power spectra, the form of the resulting Poincaré section depends on
the ratio f1/f2:

• Irrational f1/f2. The frequencies are called incommensurate. The closed
curve C appears continuous, e.g.

C

x
1

x
2

– The trajectory on the torus T 2 never repeats itself exactly.

– The curve is not traversed continuously, but rather

T (C) = finite shift along C.

• Rational f1/f2.

– f1 and f2 are frequency locked.

– There are finite number of intersections (points) along the curve C.
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– Trajectory repeats itself after n1 revolutions and n2 rotations.

– The Poincaré section is periodic with

period = n1/f1 = n2/f2

– The Poincaré section contains just n1 points. Thus

Pi = T n1(Pi)

– Example, n1 = 5:
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1.2.3 Aperiodic flows

Aperiodic flows may no longer lie on some reasonably simple curve.

In an extreme case, one has just a point cloud:

This would be expected for statistical white noise.

Deterministic aperiodic systems often display more order, however. In some
cases they create mild departures from a simple curve, e.g.
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Such cases arise from strong dissipation (and the resulting contraction of
areas in phase space).

It then becomes useful to define a coordinate x that falls roughly along this
curve, and to study the iterates of x. This is called a first return map.

1.3 First-return maps

First return maps are 1-D reductions of the kind of 2-D Poincaré maps that
we have been considering.

Such maps are of the form
xk+1 = f(xk).

We will study these extensively at the end of the course.

We shall give particular attention to the following quadratic mapping of the
unit interval onto itself:

xk+1 = 4µxk(1− xk), 0 ≤ µ ≤ 1.

The mapping is easily described graphically. The quadratic rises from x = 0,
falls to x = 1, and has its maximum at x = 1/2, where it rises to height µ.

Consider, for example, the case µ = 0.7:
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Eventually the interations converge to x = x̄, which is where the diagonal
(the identity map xk+1 = xk) intersects f(x).

Thus x̄ is a fixed point of f , i.e.,

x̄ = f(x̄)

Another fixed point is x = 0, since f(0) = 0.

However we can see graphically that x = 0 is unstable; iterates initiated near
x = 0 still converges to x̄.

Thus x = 0 is an unstable fixed point, while x = x̄ is stable.

What determines stability? Consider graphically the case µ = 0.9:
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We infer that the slope f ′(x̄) determines whether x̄ is stable. We proceed to
show this formally.

Suppose x∗ is any fixed point such that

x∗ = f(x∗).

Define
xk = x∗ + εk, εk small.

In general, our mappings are described by

xk+1 = f(xk).
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Then

x∗ + εk+1 = f(x∗ + εk)

= f(x∗) + f ′(x∗)εk +O(ε2k)

Therefore
εk+1 ' f ′(x∗)εk.

Thus
|f ′(x∗)| < 1 ⇒ stability.

It is instructive to compare the stability of 1-D maps to the stability of the
1-D flow

ẋ = f(x).

Recall that the direction of flow depends on the sign of f(x) and that the
stability at x∗ depends on the sign of f ′(x∗):

f(x)

x

x

x
1 x

2

Whereas the stability of a continuous 1-D flow f depends on the sign of
f ′(x∗), the stability of a 1-D map depends on the magnitude |f ′(x∗)|.

In higher dimensions this same distinction holds for the eigenvalues λ of
the Jacobian (which, in the case of mappings, we have called the Floquet
matrix). That is, the sign of Re(λ) determines the stability of flows, whereas
the magnitude |λ| is the relevant quantity for maps.

1.4 Relation of flows to maps

We now consider explicitly how flows may be related to maps.
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1.4.1 Example 1: the van der Pol equation

Consider again the van der Pol equation

d2θ

dt2
+ ε(θ2 − 1)

dθ

dt
+ θ = 0

Recall that for ε > 0 the rest position is unstable and that the system has a
limit cycle.

We draw a ray emanating from the origin, and consider two representative
trajectories initiating and terminating on it:

Let xk be the position of the kth intersection of the trajectory with the ray.
There is then some mapping f such that

xk+1 = f(xk).

The precise form of f(x) is unknown, but physical and mathematical reason-
ing allows us to state some of its properties:

• f maps xk to a unique xk+1.

• f is continuous.

• f ′(x) > 1 near the origin (divergent spirals).

• f ′(x) < 1 far from the origin (convergent spirals).
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• f ′(x) > 0 for all x > 0 (since f(x+ δ) > f(x)).

The simplest form of f is therefore a curve rising steeply from the origin,
followed by a gentle upward slope:

x*

f(x*)

x

f(x)
x

k+1
 = x

k

By continuity, there must be a stable fixed point x∗ characterized by

x∗ = f(x∗) and f ′(x∗) < 1.

Thus x∗ gives the effective radius of the stable limit cycle.

1.4.2 Example 2: Rössler attractor

Consider the following 3-D flow (the Rössler attractor):

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c)

a, b, and c are fixed parameters.

Numerical solutions yield the time series x(t):
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The time series z(t):
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The true x-y phase plane:
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The true flow in 3D:

The time series—especially z(t)—display significant irregularity, but the 2D
phase plane and the 3D flow flow display some order.

Consider now a Poincaré section in the plane

y + z = 0.

From the Rössler equations, we identify this plane with extrema in the time
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series x(t), i.e., each intersection of the plane corresponds to

ẋ = 0.

Consider a sequence xmax(k) of such extrema, but only when the extremum
is a maximum of x(t).

Then plot xmax(k + 1) vs. xmax(k):
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Conclusions:

• The 1-D map—a Poincaré section in the plane y = −z–reveals that the
flow contains much order.

• The time series, however, displays no apparent regularity.

This is the essence of deterministic chaos.

We proceed to show how such Poincaré sections and 1-D maps can be con-
structed from experimental data.

1.4.3 Example 3: Reconstruction of phase space from experimental data

Suppose we measure some signal x(t) (e.g., the weather, the stock market,
etc.)

In most cases it is unlikely that we can specify the equations of motion of the
dynamical system that is generating x(t).
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How, then, may we visualize the system’s phase space and its attractor?

The (heuristic but highly successful) idea is to measure any 3 independent
quantities from x(t).

For example:

• x(t), x(t+ τ), x(t+ 2τ); τ large enough for “independence,” i.e., beyond
an autocorrelation time. This is the most popular; it is known as the
method of delays.

• x(t), ẋ(t), ẍ(t) (where the derivatives are finite differences xk − xk−1,
etc.).

Such a representation of the attractor is not identical to the “real” phase
space, but it should retain similar geometric properties.

Although we have discussed only qualitative, geometric properties. we shall
see that the various representations also yield similar quantitative properties
(e.g., measures of Lyaponov exponents).

You’ll investigate these ideas further in the next problem set.
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