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1 Introduction 

This course is 
12.006J/18.353J/2.050J Nonlinear Dynamics: Chaos 

Prof. Daniel Rothman 
TA: Constantin Arnscheidt 

1.1 Who am I? 

A professor of geophysics. My current interests focus on 

• How the carbon cycle works, including its relation to abrupt climate 
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change (via “tipping points”) 

• Dynamical mechanisms underlying the coevolution of life and the envi-
ronment, and catastrophes such as mass extinctions. 

• Complex systems in general. 

I created this course long ago, but have not taught it since 2006. I’m delighted 
to teach it again, and am exploring many ways of reinvigorating its content. 

1.2 What is this course? 

An undergraduate introduction to the theory and phenomenology of dissipa-
tive nonlinear dynamical systems. 

Let’s parse that out: 

• Dynamical system: anything (physical, chemical, biological) that evolves 
with time. Here we consider systems parameterized by only a few vari-
ables (e.g., position and momentum. . .). 

• Dissipative: system has some friction (e.g., viscosity). As t → ∞, sys-
tem approaches an attractor which does not depend (usually) on initial 
conditions (e.g., rest state of, say, a pendulum; terminal velocity of a 
falling object). 

Almost all systems in Nature are dissipative. Counter-examples: So-
lar system dynamics are conservative (“Hamiltonian”). Also molecular 
dynamics of an ideal gas (elastic collisions). 

• Nonlinear. Nonlinear science is literally the study of systems (theoretical 
or real) that are not linear. 

Let’s look at the last two points more closely. 
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1.2.1 Nonlinear systems 

The Polish-American scientist Stanislas Ulam once famously remarked that 
defining nonlinear science as above is “like defining the bulk of zoology by 
calling it the study of non-elephant animals [1].” 

Consider, for example, the usual assumptions that 

• stress ∝ strain; 

• flux ∝ force; or 

• current ∝ voltage 

We often think that, e.g. pushing something twice as hard yields twice the 
velocity. 

But consider these examples: 

• Push a block with a weak force. If the force is too weak, the block 
sticks to surface. If the force exceeds a threshold, the block slips. 

force

simple friction

pinned

terminal

velocity

This is the basis of “stick-slip” models for the dynamics of, e.g., earth-
quake faults. Or violin bows on a string. 

• Make a pile of sand by adding one grain at a time. Most of the time 
the grains are at rest. But occasionally there are avalanches. Most are 
small, but some are quite big. 

• Heat a fluid from below. If the thermal gradient is weak, heat diffuses 
upward but the fluid does not move 

Stronger thermal gradients: convection (fluid motion) carries warm, less 
dense fluid upward, and cold, more dense fluid downward. 
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If we place a probe somewhere in the fluid, the joint possibility of an 
upward or downward velocity x leads to a picture that looks like this 
(where r measures the thermal gradient): 

© Informa UK Limited. All rights reserved. 
This content is excluded from our Creative 
Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use. 

Strogatz [2], Fig. 3.4.2 

Here, when r is less than a critical value rc, the zero-velocity state is sta-
)1/2ble; above rc it is unstable and the typical velocity grows like (r − rc . 

We’ll look at such situations more generally in the next lecture. 

But for now, we note that this is an example of a general characteristic of 
nonlinear systems: small changes in parameters can lead to qualitatively 
different behavior. 

• Fluid dynamics more generally: 
u(x)

u(x+dx)

The fluid velocity ~u(~x) changes in part because the fluid flows; i.e., 

~u(~x) → ~u(~x + d~x) 

But ~u also governs how fast this change occurs. Therefore d~u/dt depends 
nonlinearly on u, and includes a change like 

2(~u · r)~u ∼ u 

i.e., a particle moves at velocity ~u along a velocity gradient r~u to a place 
where the velocity is different. 

When this nonlinearity is weak (because u is small), flow is smooth and 
laminar. When it is stronger, flow becomes turbulent. 

• Climate. The climate “system’ involves fluids, convection, and perhaps 
the most nonlinear system of all: life. So it is unquestionably nonlinear. 
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But is it unstable? There are many known—and unknown—positive 
feedbacks. And plenty of examples of abrupt climate change in the past. 

Understanding the methods and concepts in this course is a necessary 
first step toward determining whether climate “tipping points” exist. 

• Social systems (e.g., political or economic). The same general remarks 
hold. 

1.2.2 Dissipative systems 

In dissipative systems, energy input to a system is eventually balanced by 
friction. The resulting “steady state,” a kind of “attractor” is sometimes 
quite simple. 

But we shall see that the combination of nonlinearity and dissipation can lead 
to strange attractors, on which there is sensitivity to initial conditions. 

The overall idea is that small changes in initial conditions lead to large 
changes in the long term. 

The classic example is the weather, explained first, in 1963, by MIT professor 
Edward Lorenz. 

Lorenz’s discovery was eventually termed the “butterfly effect”: a butterfly 
that flaps its wings in, say, Brazil, can affect, at a later time (in principle) 
the weather in New York. 

This deterministic unpredictability we call chaos. 

The idea has now entered the cultural mainstream. But this course shows 
that the notion of chaos in dissipative systems is really quite non-intuitive: 
we’ll understrand why it is possible for a system to be attracted to a statisti-
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cally steady state—its attractor—regardless of initial conditions, while being 
sensitive to to initial conditions on the attractor. 

1.3 Course goals 

We teach: 

• Elementary aspects of the theory of nonlinear dynamics and chaos. 

• Phenomenology (e.g., aspects of fluid turbulence, scaling laws, experi-
mental phenomena). 

• Computer experimentation. 

• Analysis of experimental data. 

Our computational experiments are exploratory. Rather than focusing on 
the computation of a specific quantity (e.g., some integral), we construct 
simple models and compute their evolution to determine qualitative aspects 
of dynamics. 

These qualitative dynamics are often quite general and apply to a wide array 
of problems in science and engineering. 

Thus a major goal of the course is for students to learn why such wide-ranging 
applicability exists in problems that may superficially appear quite different. 

1.4 Administrative details 

• TA: Constantin Arnscheidt. 

• All course materials will be available on Canvas. 

• Prereqs: Must know o.d.e.’s (18.03). Some linear algebra (e.g., eigenval-
ues and eigenvectors). 

• Problem sets: Some analytic, some require numerical simulation. 
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• We usually provide Matlab and Python codes, but modifications are 
often necessary. Only rudimentary coding skills are required, and they 
can be learned in this course. 

• The objective of the numerical experiments is to impart a sense of dis-
covery in the exploration of dynamical systems and comparison with 
theoretical predictions (in the spirit of Lorenz and Feigenbaum). 

• Students with no experience in numerical computation may wish to con-
sult the TA for assistance. 

• Requirements 

– No exams. 

– There will be about 9 problem sets. 

– A final project: either a review of a topic in the literature, your own 
attempt to apply or extend what you’ve learned to a problem that 
interests you, or a combination of both. A written report will be 
due in the last class (Dec. 13), at which time students will also give 
brief presentations. You should choose your topic by Nov. 8, and 
submit it for approval. Further guidelines will be given. 

– Problems sets count for about 80% of the grade and the final project 
about 20%. 

• The first pset is due next Thursday. It is easy, but we want to be sure 
that everyone is comfortable with the (modest) numerical computation. 

1.5 Syllabus 

1. Elementary nonlinear dynamics and its empirical analysis 

(a) Flows and bifurcations in 1D. 

(b) Oscillators, phase space, stability, conservation/contraction of areas 
in phase space, 

(c) Limit cycles, Hopf bifurcations, excitability 

(d) Power spectra, autocorrelations, Poincaré sections, maps (e.g., xk+1 = 
f(xk)). Phase space reconstruction. 
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(e) Fluid dynamics and Rayleigh-Bénard (thermal) convection. 

2. Deterministic chaos in low-dimensional systems. 

(a) Strange attractors. Sensitivity to initial conditions. Lorenz attrac-
tor, Hénon attractor, etc. 

(b) Quantifying chaos (“measuring the strangeness of strange attrac-
tors”). 

i. Fractal dimension (how many “degrees of freedom”?; dynamics 
becomes geometry). 

ii. Lyaponov exponents (How sensitive to initial conditions?). 

(c) Transitions to chaos, scaling and universality. 

i. Period doubling. Oscillations of successively longer periods 2n 

occur when the control parameter has value µn, with 

(µ∞ − µn) ∝ δ−n 

where the system is chaotoc at µ∞ and δ = 4.669... is universal. 

ii. Intermittency. 

iii. Quasiperiodicity. 

The second half of the course stresses the relations between pde’s, ode’s, 
and discrete mapping. We shall see that much of the complexity of non-
linear pde’s is contained in simple 1-D maps! 

3. Remaining time (if any): physical models of scale invariance (fractals) 
in nature. 

1.6 Course material 

Strongly recommended: Strogatz [2]. Beautifully written. Only a few lectures 
will follow it in detail, but nearly all the subjects we cover are addressed in 
the book. PDF is downloadable from the MIT Library. 

All of our lectures will be accompanied by detailed lecture notes that will be 
posted to the Canvas website before or shortly after the lecture. 
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1.7 Students 

Who should take this course? 

• Scientists and engineers who desire to learn how and why nonlinearity 
manifests itself in natural systems. 

• Mathematicians who seek a scientific, physical, and phenomenological 
inspiration for the further development of mathematical theory. 

• Anyone interested in how one “does science” with computers. 

1.8 Handouts and further reading 

You should have 

• Guidelines 

• Syllabus 

• Problem Set 1. Much easier than usual, just to get started, and an op-
portunity to resolve now any technical problems with Python or Matlab. 

Also: For general background, read Chapter 1 of Strogatz. 
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