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10.40 Thermodynamics Fall 2003 
Problem Set 2  
 

 
Problem 4.3 Text 

 
A Hilsh vortex tube for sale commercially is fed with air at 300 K and 5 bar into a tangential slot 
near the center (Point A in figure).  Stream B leaves from the left end at 1 bar and 250 K; 
stream C leaves at the right end at 1 bar and 310 K.  These two streams then act as a sink and 
source for a Carnot engine and both streams leave the engine at 1 bar and TD.  Assume ideal 
gases that have a constant heat capacity Cp = 29.3 J/mol K.  
 
(a)  If stream A flows at 1 mol/s, what are the flow rates of streams B and C? 
(b)  What is TD? 
(c)  What is the Carnot power output per mole of stream A? 
(d)  What is the entropy change of the overall process per mole of A? 
(e)  What is the entropy change in the Hilsh tube per mole of A? 
(f)  What is the maximum power that one could obtain by any process per mole of A if all heat               

were rejected or absorbed from an isothermal reservoir at TD? 
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Solution: 
(a)  The flow rates for streams B and C can be calculated by performing a 1st Law Energy 
Balance, using the Hilsh vortex tube as the system. 
 
System:  Hilsh vortex tube
Open 
Adiabatic 
Rigid 
 

 
 
 
(b)  Part (b) is very similar to Example 4.5.  The major difference is that whereas in Example 4.5 
we are given that the cold reservoir temperature is constant and asked to find the max. work, in 
this problem both the hot and cold reservoir temperatures change in the process and we are asked 
to find the final temperature of the two streams, TD.   
 
There are several ways to start this problem.  Following Example 4.5, imagine that streams B 
and C are connected by an infinite number of Carnot engines.  Picking a single, ith engine as our 
system,  we can start with a set of equations relating efficiency, work, heat interactions, and 
temperature: 
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It should be noted that δQBi is assumed to be negative in the above derivation.  We also could 
have realized that since we are working with a reversible Carnot engine, the entropy changes in 
the hot and cold stream sum to zero and we can use the Clausius expression (Eq. 4-26 in the 
book).  Either way, we eventually end up with: 

10.40 Fall 2003  Page 2 of 4 
Problem Set 2 Solutions 

dU = 0 = δQ + δW + Hin δnin - Hout δnout

Hout δnout  = hB dnB + hC dnC

hA dnA  = hB dnB + hC dnC

hA = CpTA + ho, hB = CpTB + ho, hc = CpTC + ho,

nB + nC = 1 mol/s

(1)(300) = nB(250) + (1- nB)310

Therefore,
and,

with the 1st Law
expression reduces to,

nB = 0.166 mol/s
nC = 0.833 mol/s

δnin = dnA

δnout = dnB + dnC

Hin = hA

δQ = δW = 0

. . .
.

. .

.

.
.
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Performing a 1st Law Balance on the differential part of the hot stream, stream C, that interacts 
with this ith Carnot engine shows that: 
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Dividing by dt, and substituting for dH: 

Ci C p CQ n C d= −& & T  (4) 
 
Likewise, a material balance on cold stream, stream B, gives: 

Bi B p BQ n C dT= −& &  
 
Notice that our previous assumption that δQBi is negative with respect to our Carnot Engine 
system was correct.  Substituting these into equation (2) gives: 
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Integrating over the infinite number of Carnot engines from the inlet conditions to the exit, where 
both streams are at the same temperature TD, and plugging in values gives: 
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(c)  Performing a 1st Law Energy balance over the entire Hilsh tube and Carnot Engine Process 
gives: 

 
 

(d)   To determine the entropy change for the overall process, we considered a closed system 
consisting of one mole of gas (considering an open system for our process leads to a dead end).  
Since entropy is a state function, we can consider only the end states of the gas, and imagine that 
there is some reversible process that connects these two end states.  Applying the combined 1st 
and 2nd Law (Eq. 4-34 in the book): 
dU TdS PdV= −  (7) 
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dU = 0 = δQ + δW + hAdnA - hDdnD

W = - (1)(29.3)(300 - 299.1) = - 26.4 J/s

δW = - dnA(hA - hD) = - dnACp(TA - TD)
dnD = dnA

δQ = 0

.
.

. .
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dU PdS dV
T T

= +  (8) 

 
Noting that the number of moles is constant (N=1 mole) and that: 
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We now have: 
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Integrating between our initial Stream A conditions and our final Stream D conditions gives: 
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Substituting values, we find that ∆S = 13.3 J/K for one mole of stream A. 
 
(e)      The entropy change in the Hilsh tube is the same as (d) since the Carnot step is reversible. 
(f)      The steady state maximum work for a flow entering at A and leaving at D with an 
          environment at D, steady state is obtained using an energy and entropy balance:  
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dU = 0 = δQrev + δWmax + Hin δnin -Hout δnout

Combining,

dS = 0 = δQrev / TD + Sin δnin - Sout δnout

−δWmax = (Hin - TDSin)δnin - (Hout - TDSout)δnout

Wmax = -n[(Hin - TDSin) - (Hout - TDSout)]

= -n[(Hin - Hout) - (TD(Sin - Sout))]

= -n[Cp(TA - TD) - TD(SA - SD)]

= -(1)[(29.3)(300 - 299.1) - (299.1)(-13.3)]

or Wmax = -4000 J/s

.

.

.

.
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