
Exam 2, #4 

10.40 Thermodynamics Fall 2003 
Exam 2 

 
Problem 4 

 
4. (20 points) For a fluid whose intermolecular interactions follow the Sutherland potential 

described in Problem Set 8 (Problem 10.12 of the text):  
 

(a) (10 points) Can B(T), the second virial coefficient, be positive or negative or  
zero?  Justify your answer and explain its significance in terms of molecular 
interactions. 

 
(b) (10 points) Do you expect that this fluid will exhibit a Zeno point condition at high 

density (ρ >> 0) where the compressibility factor Z = PV/RT equals unity?  Explain 
the rationale behind your answer. 

 
Solution: 
(a) 
The Sutherland potenital combines hard sphere repulsion with Lennard-Jones 1/r6 attraction to 
give: 
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As we saw in Problem 10.12, it can be shown that the Sutherland potential results in the van der 
Waals equation of state when pairwise additivity is assumed and |Φij| is calculated from the 
Sutherland potential. 
 
The 2nd virial coefficient, B(T), also only depends on binary interactions between molecules.  
Therefore, the virial EOS should be identical to the van der Waals EOS in the low density limit, 
where  
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Note that the equations of state have been truncated after the V3 term.  The expansion and 
truncation of the denominator of the first term of the vdW EOS was demonstrated in Problem Set 
5, Problem 3.  In this problem as well numerous times in class, we have seen that the term 
(RTb – a) can be positive, negative, or zero.  Therefore, B(T) can also be positive, negative, or 
zero, depending on the value of T for a given V.  Moreover, the significance of the value of B(T) 
in terms of the molecular interactions is analagous to the interpretation of the value of (RTb – a): 
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If B(T) is …  
( )

( )

   repulsive molecular forces dominate
   0    attractive and repulsive terms are equal (Zeno Pt.)
   attractive molecular forces dominate
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Alternatively, B(T), can be calculated from the Sutherland pontential.  From Equation (10-114): 
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For r < σ, where a hard sphere repulsion is assumed: 
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For r > σ, where a Lennard-Jones 1/r6 attraction is assumed: 
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Summing the contributions, we have 
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The key to solving this problem using the Sutherland potential was realizing that the hard sphere 
interaction contributed a positive term to B(T), while the LJ attractive term contributed a 
negative term.  The hardest step was showing that the integral for the LJ attractive term was 
indeed always negative.  Some students showed this as done above.  Others expanded the 
integral by expanding the exponential as a power series and showing that each term was 
negative.  Others noted in words the sign of each contribution.  Any of these methods was 
acceptable. 
 
Once again, we see that B(T) can be positive, zero, or negative, depending on the value of T.  
From this development, it is even easier to see that repulsive (hard sphere) forces dominate for 
positive values of B(T), while attractive (LJ) forces dominate for negative values of B(T).  It is 
also clear that these forces are equally balanced when B(T) = 0. 
 
(b) 
We can no longer use the truncated version of either the virial equation of state or van der Waals 
EOS that we developed in part (a) because they only apply at lower densities, whereas we are 
now dealing with densities much greater than zero.  (Therefore, saying that B(T) = 0 gives the 
Zeno Point condition is not correct, since this gives the trivial solution that Z = 1 for an ideal gas 
at the Boyle point.)  However, if we keep our pairwise additivity assumption, we can still derive 
the van der Waals EOS from the Sutherland potential as we did in Problem 10.15, so that: 

2

RT aP
V b V

= −
−

 

 

10.40 Fall 2003  Page 2 of 3 
Exam 2 Solutions 



Exam 2, #4 

still applies.  Although the Sutherland potential only assumes pairwise additivity, the vdW EOS 
is still able to account for tertiary, quaternary, etc. interactions by approximating a tertiary 
interaction as 3 binary interactions, etc.  In the end, the a term accounts for and corrects for all of 
these attractive interactions, while the b term accounts for the hard-sphere repulsion.   
 
From the vdW EOS, we clearly see the interaction of attractive and repulsive forces.  We can 
conclude that at any given density, there will always be a point where the repulsive forces and 
attractive forces balance each other, resulting in the case where it appears that there is no 
interaction potential between the molecules, resulting in a Zeno Point condition. 
 
We could also come to the same conclusion by looking at the virial form of the vdW EOS: 
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This is similar to the virial EOS.  We must realize that in order for this form of the equation to be 
accurate at high densities, a large number of terms are necessary.  These terms will cancel each 
other out at the Zeno Point condition.  Since this interaction potential has both attractive and 
repulsive terms, there must be some point where these forces balance each other out. 
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