
Problem Set 6, #1 

10.40 Thermodynamics Fall 2003 
Problem Set 6 
 

 
Problem 1 

 
Consider a gas mixture of carbon dioxide and nitrogen at 298 K and 5 bar.  

 
(a) How would you model this mixture in terms of its enthalpy and entropy?  Be sure to 

specify your reference states when describing your model.   
 

(b) Estimate the minimum work required to separate 100 moles of a 40 mole% nitrogen 
mixture into pure carbon dioxide and nitrogen.  
 

(c) Would your model need to change if the pressure were increased to 200 bar? If so, 
how?  You are not required to perform detailed calculations, but be sure to give your 
approach to solving the problem.  Include any parameters that you would need to 
look up or estimate in order to solve the problem. 

 
Solution: 
(a) 
Since the pressure is relatively low, it should be reasonable to model this mixture as a mixture of 
ideal gases.  We can check this assumption by calculating the reduced temperature and pressure 
for each component and using Fig. 8.3 to determine how close the compressibility, Z, is to zero.  
The table below shows the relevant information.  As we can see, the compressibility for each is 
very close to 1, so that an ideal gas assumption is justified. 
 

Species Tc (K) Tr Pc (bar) Pr Z 
CO2 304.2 0.98 73.8 0.068 ~0.99 
N2 126.2 2.36 33.9 0.147 ~1.0 

 
With the ideal gas assumption, we can now use as our equation of state 
PV = NRT (1) 
 
where N = total number of moles in the system.  To complete our model, we must pick reference 
states and determine how to model mixtures.  The most common reference state is to define the 
reference state for each compound relative to its constitutive elements in appropriate 
stoichiometric ratios at T = 298 K and P = 1 bar.  At these conditions, the enthalpy and entropy 
of pure elements is assumed to be zero.  Therefore, Ho

N2 = 0 and So
N2 = 0, while Ho

CO2 = ∆Ho
f,CO2 

and So
CO2  = ∆So

f,CO2.  Since the enthalpy of an ideal gas is only a function of temperature: 

( ) ( )o

To
i i i p ,iT

H H T H C T dT= = + ∫  (2) 

 
 
 

10.40 Fall 2003  Page 1 of 4 
Problem Set 6 Solutions 



Problem Set 6, #1 

Likewise, it can be seen from Equation (8-23) that for an ideal gas: 

( ) ( )
o

T p ,io
i i i T P

C T RS S T ,P S dT dP
T P

= = + −∫ ∫ o

P

H

)

 (3) 

 
With the pure component models done, we must now determine how to model the mixtures.  To 
do this, we will follow the method outlined in Section 9.6 of T&M for ideal solutions.  Since the 
enthalpy of an ideal gas mixture is only a function of temperature, and not composition, then it is 
evident that ∆Higm

mix = 0, and from Equation (9-99) we conclude that: 
n

igm
i i

i
H y

=

= ∑
1

 (4) 

 
To determine Sigm, we start with Equation (9-69) for the Gibbs Free Energy: 

( ) (
n

igm igm o
mix n i i i

i
G G T ,P, y ,..., y y G T ,P, y−

=

∆ = − =∑1 1
1

1  (5) 

 
Note that we have taken as a reference state the pure component species i at the same T, P, and 
state of aggregation as the mixture.  This differs from the reference state used to determine H and 
S of the pure components in that the T and P of those reference states are fixed at 298 K and 1 
bar, respectively, and that the reference state is relative to the constitutive elements of the 
components, not the components themselves.  Next, we note that from Equation (9-10) 

n
igm

i i
i

G y
=

= ∑
1

G  

 
Also, from Equations (9-81) and (9-82), for an ideal gas mixture: 

( )
( )
 ln 

ln  ln 
i i i

i i

G RT p T

( )RT P y T

λ

λ

= +

= + +
 (6) 

( ) ln o
iG RT P Tλ= + i  (7) 

 
Combining Eqns. (5), (6), and (7), we see that: 

ln 
n

igm
mix i

i

G y RT P
=

∆ = ∑
1

( ) ( ) ln i iy Tλ+ +  ln iy RT P⎡ ⎤ −⎣ ⎦ ( )i Tλ+
n

i=

⎡ ⎤
⎣ ⎦∑

1
 (8) 

 ln 
n

igm
mix i i

i
G RT y

=

∆ = ∑
1

y

y

y

 (9) 

 
Noting that ∆Gmix = ∆Hmix - T ∆Smix, and applying Equation (9-99) again: 

 ln 
n

igm
mix i i

i

S R y
=

∆ = − ∑
1

 (10) 

 ln 
n n

igm
i i i i

i i
S y S R y

= =

= −∑ ∑
1 1

 (11) 
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This gives us all the equations we need to model the CO2-N2 mixture.  Note that the mixing 
functions are the same as those for an ideal solution.  However, an ideal gas mixture and an ideal 
solution are not identical, since for an ideal gas mixture PV=RT.  This is not necessarily true for 
an ideal solution.   
 
(b) 
The solution to this problem is discussed extensively in Section 9.9 of Tester & Modell and in 
Example 9.8.  It can be done by either finding the change in availability for the process or by 
calculating ∆Gmix for the solution.  We can use the mixing functions for an ideal gas mixture 
derived in part (a).  Since we are going from mixed to unmixed at constant temperature: 

igm igm igm
min mix O mix mixW B N B N H T S N G

=

⎛ ⎞
⎜ ⎟= ∆ = ∆ = − ∆ − ∆ = − ∆
⎜ ⎟
⎝ ⎠0

 (12) 

  

( ) ( )

ln 

J moles  K 8.314  ln 0.4 + 0.6 ln 0.6
mol K

n

min O i i
i

W N T R y y

.

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎡ ⎤= ⎢ ⎥⎣ ⎦

∑
1

1000 298 0 4
 (13) 

 J or 166.7 kJminW = 166700  
 
(c) 
At a pressure of 200 bar, we are no longer going to be able to model these gases as an ideal gas 
mixture and would have to use some other, more accurate, equation of state.  For example, the 
Redlich-Kwong-Soave or Peng-Robinson EOS may be appropriate.  Any model would have to 
be checked against actual data to ensure an adequate fit.  In addition to the normal parameters 
needed for these equations of state, such as critical constants, mixing rules will have to be 
chosen.  Some commonly chosen mixting rules are those proposed by Lorentz and Berthelot: 

( )      
n n

m i i m i i
i i

b x b a x a
= =

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
∑ ∑

2
1 2

1 1
 

where bi and ai are the parameters used in the RKS and PR EOS’s for pure single components.  
Another popular approach for the case where the components have very dissimilar molecular 
properties and the above mixing rules do not give a good fit is to include “binary interaction 
parameters” that are fit to data to give a better fit.  For example, bm may be used as above, but am 
is modified to include the interaction parameter δij, where: 

( )   

   

m i j ij
i j

ij ij i j

ii i jj j

ii jj

a x x a

a a a

a a a a

δ

δ δ

=

i j= − ≠

= =

= =

∑∑

1

0

 

The greater the interaction between components i and j, the larger the value of δij.  Using such an 
EOS, the model is then built in a method similar to that shown in part (a).  Specifically, we could 

10.40 Fall 2003  Page 3 of 4 
Problem Set 6 Solutions 



Problem Set 6, #1 

assume the same pure component reference state as before, and applying Equations (9-69), (9-
107), (9-82) and (9-120) we get: 

 ln
n n

mix i i i i i
i i

ˆG y G G RT y   φ
= =

⎡ ⎤∆ = − =⎣ ⎦∑ ∑
1 1

 (14) 

 
The fugacity coefficient can be calculated using Eq. (9-129) or Eq. (9-142). 

10.40 Fall 2003  Page 4 of 4 
Problem Set 6 Solutions 


