
Problem Set 5, #3 

10.40 Thermodynamics Fall 2003 
Problem Set 5  
 

 
Problem #3 

 

We would like to make a few modifications to the van der Waals EOS and evaluate how the PVT 
behavior of a pure fluid might change.  

(a) Expand the RT/( V-b) term of the vdw EOS as a polynomial power series in b/V 

(b) If we truncate the expansion after the (b/V)2 term, how does the compressibility 
change as a function of density from very low density (ρ = 0) to high density 
(ρ = 1/b)?   

(c) Is it possible for a fluid obeying this modified EOS to reach a Zeno condition where  
Z = 1?  If so, where does this occur? 

(d) Assuming that the Zeno condition is met for this pure material, estimate the fugacity 
coefficient ( φi) at this point.  How do you interpret your estimate?  

 
Solution: 
(a) 
 

van der Waals EOS: 2

RT aP
V b V

= −
−

 

 

Rewriting the first term: 
1

RT RT V
V b b V

=
− −

 

 
Expand using the following series expansion: ( ) 1 2 3 4 21 1 ...  for 1x x x x x x−− = + + + + + <  
 Since b is an exclusion volume, (b/V)2 < 1. 
 

Applying the expansion:    

( )

2 3

2 2 3

1
1

1

RT V RT b b b
b V V V V V

RT V RT b b
b V

ρ ρ ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
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(b) 
 
After truncation: 
 

2 2

2 2

2

2 2

1

1

1

RT b b a RT RT b aP b
V V V V V V V R

PV b b aZ
RT V V RTV

aZ b b

T

RT
ρ ρ ρ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + − = + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞= = + + −⎜ ⎟
⎝ ⎠

= + + −

 (1) 

 
0, 1

1/ , 3

Z
ab Z

bRT

ρ

ρ

→ =

→ = −
 

 
For the ρ = 1/b case, it should strike us as odd that we get an arbitrary number, 3, in our result.  
Looking at our arithmetic, we realize that the value of 3 comes from us truncating after (b/V)2.  If 
we had left more terms in the truncation, we would have had a larger constant in the solution.  If 
we had left infinite terms, we would have a constant equal to infinite.  The reason for this is that 
at ρ = 1/b, the series expansion that we used is no longer valid since b/V = 1. We conclude that  

   As , RTV b
V b

→ → ∞
−

 

In the VdW EOS, b represents the exclusion volume of the molecules and describes the repulsive 
forces between molecules.  If V=b, then the molecules would be in intimate contact with no 
space between them.  This can be interpreted as meaning that an infinite pressure is needed to 
bring these molecules into such a condensed state. 
 
(c) 
 
As shown in part (b), it is possible for a fluid that is obeying the truncated EOS to reach Z=1 
condition. 
 
The trivial case for Z=1 is 0ρ →  
 
The second case is: 

2 2

2

1 1aZ b b
RT

ab b
RT

ρ ρ ρ

ρ

= + + − =

+ =
  (2) 

 
This represents the point at which the attractive forces (described by a) are perfectly balanced by 
the repulsive forces (described by b) between the molecules.   
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(d) 
 
We are interested in the second case for Z=1 (equation (1)). 
 
From equation 9-143 (text) for a pure material, 
 

N
0,

ln ln ln
V

i
i

T V

f P RTRT RT dV RT
P N V

φ
=∞

⎡ ⎤∂⎛ ⎞= = − − −⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦
∫ Z  (3) 

 
 
Calculating the partial derivative from the truncated vdw EOS 
 

2 2 3 2

2 3 2

2 2

2 3 2
,

2 3 2

T V

NRT RTbN RTb N aNP
V VV V

P RT RTbN RTb N aN
N V VV V

= + + −

∂⎛ ⎞ = + + −⎜ ⎟∂⎝ ⎠

  (4) 

 
Plugging equation (4) into equation (3) yields, 
 

ln i
RTRT
V

φ = −
2 2

2 3 2
2 3 2RTbN RTb N aN RT

VV V V
+ + − −

2 2

2

2

2 3 2ln
2

At , all terms go to zero

At , 

2ln

V

V

i

i
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V
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V

bN
V

φ

φ
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∞
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⎢ ⎥
⎢ ⎥⎣ ⎦
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⎛ ⎞
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⎝ ⎠

=

∫
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2
3 2
2
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−
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Alternate method: departure function
 
From equation 9-113 (text), 
 

0ln ln i
i i

f
iRT RT G

P
φ = = G−  

 
From section 8.5 (text) 
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0 0 0

0 0 0

0 0

( ) ( )
( ) ( ) (
( )

G G H H T S S
G G A A PV RT T S S T S S
G G A A PV RT

− = − − −

− = − + − + − − −

− = − + −

0 )  (5) 

 
We would like to calculate the Gibbs Free Energy departure function by using the Helmoltz Free 
Energy departure function since the Helmholtz Free Energy departure function is a function of 
temperature and volume. 
 
Start by calculating the Helmholtz Free Energy departure function. 

0
0 ln

V RTA A P dV RT
V V∞

⎛ ⎞− = − − +⎜ ⎟
⎝ ⎠∫

V   (6) 

 
Plug equation (1) into (6). 
 

0 RTA A
V

− = − 2
2 3 2

RT RT a RTb b
V V V V

+ + − −
0

2 0
0

2

2

0
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2
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V
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V
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∞
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∫

2
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2
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Plug the expression for the departure function for the Helmholtz Free Energy into equation (5). 
 
 

N

2 0
0

2

0
0

0

2 0
0

2
0

0

ln
2

ln ln ln 0

        and  since Z=1

ln ln
2i

b RT VG G RT PV RT
V V

RT V RTV RT RT RT Z
P V PV

PV RT

b RT VG G RT PV RT
V V

φ

=

=
=
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2

2

1ln
2i

b
V

φ = −  

 
The departure function method yields the same result as starting from equation 9-113 (text). 
 
This result illustrates that although Z =1, the pure fluid does not behave ideally at all points along 
the Zeno line.  In fact, the more condensed the fluid (the smaller the value of V), the greater the 
departure from ideality.   
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