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10.40 Thermodynamics Fall 2003 
Problem Set 10 
 

 
Problem 15.29 Text 

 
Solution: 
 
To determine if the Margules equation is applicable for the limit of miscibility of a binary 
solution, we examine the behavior at the consolute point.  In particular, we look at the values of 
A and B at the consolute point.  At the consolute point, the spinodal and binodal curves meet.  
The limit of stability that corresponds to the spinodal curve, Eq. (15-153), applies to the 
consulate point. 
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, the solution is stable, which means that only a single phase will be 

present. 
 
An additional criterion of stability is applicable at the consolute point since it behaves as a 
critical point.  From Section 7.3, at the critical point, or the consulate point in this problem, 
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Following a similar derivation to Section 15.7, the second criteria for the consolute point is: 
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In the problem we are given and equation of state for .  It can be related to by 
applying Eq. (9-168). 
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EX ID
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where  (9-101) ( 1 1 2 2ln lnID

mixG RT x x x x∆ = + )
 
Combining equations for ideal and excess properties yields, 
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Differentiation of Eq. (3) results in, 
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Solving for A and B from Eqs. (4) and (5) yields their values at the consolute point as a function 
of solution composition. 
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The values of Ac and Bc are applicable over the entire composition range except for where x1 
equals zero or one (where there will be a single pure phase of either component 1 or 2).  By 

inspection of Eq. (4), when A and B are less than their critical values, 
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, so the 

solutions will be miscible and form a single phase.  When A and B are greater than their critical 
values, the solutions will not be miscible and will form two phases.  The values of A and B are 
constrained by Eq. (6) and are plotted below.  As x1 goes to 0 or 1, the values of A and B go to 
negative infinity.  Since the Margules equation gives conditions for solutions ranging from a 
single solution through the consolute point and to liquid-liquid equilibrium, it can be used for 
liquid-liquid equilibrium problems. 
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Experimental determination of A and B 
 
Values of A and B can be found for a binary mixture based on values of x1 or x2 in the two liquid 
phases.  At equilibrium between liquid 1 (α) and liquid 2 (β), the fugacity of each component in 
the α and β phases are equal. 
 
ˆ ( , ) ( , )i i i i i i i îf x f T P x f T P fα α α α β β β βγ γ= = =  (7) 

 
Since if

α  and if
β is the fugacity of xi=1 at T and P of interest, they are equivalent.  Eq. (7) 

reduces to: 
 

1 1 1 1x xα α βγ γ= β  (8) 

2 2 2 2x xα α βγ γ= β

1

 (9) 
  
and can be rewritten in natural log form as: 
 

1 1 1ln ln ln lnx xα β βγ γ− = − α

2

 (10) 

2 2 2ln ln ln lnx xα β βγ γ− = − α  (11) 
 
The Margules equation can be related to the activity coefficient by a combination of Eqs. (9-180) 
and (9-53). 
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Plugging the Margules equation into (12) and simplifying yields: 
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Substituting Eqs. (13) and (14) into (10) and (11) yields two equations with two unknowns (A 
and B) given experimental pairs of values for and i ix xα β .  These equations can be written as: 
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Thus, A and B can be determined experimentally using Eqs. (15) and (16). 
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