
Problem Set 6, #3 

10.40 Thermodynamics Fall 2003 
Problem Set 6 
 

 
Problem 3 

 
For the same lattice in number 2., but now with only 2 non-interacting particles, each of which 
can exist in only two states, such that E1 = 3 kcal/mol and E2 = 5 kcal/mol, calculate U, S, G, and 
Cv.  (Note that this is a simple model of a two-state equilibrium, such as a protein which can exist 
in either a folded or unfolded state, in solution.) 

 
Solution: 
 
The system is a canonical ensemble since it has constant N, V, and T.  In order to evaluate the 
thermodynamic properties like we did in problem 2, we need to determine our new partition 
function, Q. 
 
Q = (configuration contribution)(energetic contribution) 
 
There are two ways to interpret this problem.  When the question was written, it was assumed 
that you could only measure the total energy of the system, hence you would be unable to 
differentiate between a particle in one lattice point and a particle in another lattice point.  
Therefore, the particles would be indistinguishable regardless of their positions in the lattice.  We 
will call this Method 1: Indistinguishable Particles.  The other method assumes that you can 
measure the energy of an individual lattice point and thus the particles become distinguishable 
when they occupy different lattice points.  We will call this Method 2: Distinguishable Particles.  
The methods give different answers.  We will start with Method 1. 
 
Method 1: Indistinguishable Particles 
 

The energetic contribution to Q =  
3

where =1/  and  is the energy statejE
j

j
e kT Eβ β−∑

There are three possible energy states (3+3=6), (3+5=8), (5+5=10).  There is only one energy 
state equal to 8 since it is impossible to distinguish between 3+5 and 5+3. 
 
The configuration contribution is due to the fact that there are Ω ways to arrange the two 
particles in order to get each of the possible energy states. 
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      where M = # of sites = 1000, N = # of particles = 2  

                                                the particles are non-interacting and indistinguishable  
 

( )6 8 10 0.592 /Q e e e kcal molβ β β β− − −= Ω + =  (1) 
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Using similar reasoning to problem 2, the thermodynamic variables in terms of the partition 
function are: 
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Using the MATLAB code that is attached to the end of the program to evaluate the functions: 
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Method 2: Distinguishable Particles 
 

The energetic contribution to Q =  where =1/  and  is the energy statejE
j

j
e kT Eβ β−∑

There are four possible energy states (3+3=6), (3+5=8), (5+3=8), (5+5=10) when the particles 
are not on the same lattice point.  There are two energy states equal to 8 since it is possible to 
distinguish between 3+5 and 5+3 (particle with energy 3 kcal/mol on site i and particle with 
energy 5 kcal/mol on site j versus 3 kcal/mol on site j and 5 kcal/mol on site i).  When the 
particles are on the same lattice point there are only three possible energy states since it is 
impossible to distinguish among the particles on the same lattice point, regardless of their 
individual energies. 
 
The configurational contribution, Ω, is the same for the 6 and 10 kcal/mol energy states as the 
indistinguishable case (500,500).  However, for the 8 kcal/mol energy level, the configuration 
contribution, Ω’, is different. It is equal to the distinguishable, non-interacting case minus the 
number of lattice sites (we must subtract the number of lattice sites to avoid double counting the 
indistinguishable cases where the particles occupy the same site). 
 

' 999,000NM MΩ = − =  
 
Thus, the partition function is: 
 

( ) (6 10 8'Q e e e )β β− − −= Ω + +Ω β   (3) 
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We now evaluate equation (2) using equation (3) with the MATLAB code that is attached at the 
end to yield the following results. 
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MATLAB Codes 
 
Method 1: Indistinguishable Particles 
 
% Declare variables symbolically 
syms Cv Q E0 E1 E2 q N k T R Nav A S U G dlnQ_dT d2lnQ_dT2; 
 
% We can divide the partition function into two parts,  
% a configurational part and an energetic part, so 
% Q = q(config) + q(energetic) 
% First define energetic partition function for system of 2 particles in  
% which the particles can exist in three states: 
% [3 3], [3 5] or [5 3],  [5 5] 
% The [3 5] and [5 3] states are indistinguishable since we can 
% only measure the total energy of the lattice.  Therefore, they 
% state where E1 = 8 kcal/mol only appears once in q(energetic) 
% q(config) comes directly from Problem 2, so Q = ... 
Q = 500500 * (exp(-E0/(R*T)) + exp(-E1/(R*T)) + exp(-E2/(R*T))); 
 
% Determine what the derivative lnQ wrt T is 
dlnQ_dT = diff(log(Q), 'T'); 
 
% Now we define our variables of interest 
A = -k * T * log(Q); 
S = k * T * dlnQ_dT + k * log(Q); 
U = k * T^2 * dlnQ_dT; 
Cv = diff(U, 'T'); 
G = U - T*S; 
 
% Now start plugging in values for variables,  
% paying special attention to units 
E0 = 6;     % kcal/mol 
E1 = 8;     % kcal/mol 
E2 = 10;    % kcal/mol 
E0 = E0 * 1000 * 4.186;  % convert to J/mol 
E1 = E1 * 1000 * 4.186;  % convert to J/mol 
E2 = E2 * 1000 * 4.186;  % convert to J/mol 
N = 2;   % # of particles 
k = 1.3806503E-23;  % J/K 
R = 8.31451; % J/molK 
T = 298;  % K 
Nav = 6.022137E23; %Avogadro's number, mol^(-1) 
 
% Now we evaluate numbers, working inside out 
disp(['A = ', num2str(eval(A)), ' J']) 
disp(['S = ', num2str(eval(S)), ' J/K']) 
disp(['U = ', num2str(eval(U)), ' J']) 
disp(['Cv = ', num2str(eval(Cv)), ' J/K']) 
disp(['G = ', num2str(eval(G)), ' J']) 
 
U = eval(U)* Nav / 4186; 
disp(['T = ', int2str(T), ' K']) 
disp(['U = ', num2str(U), ' kcal/mol']) 
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Method 2: Distinguishable Particles 
 
% Declare variables symbolically 
syms Cv Q E0 E1 E2 q N k T R Nav A S U G dlnQ_dT d2lnQ_dT2; 
 
% First define partition function for system of 2 particles in  
% which the particles can exist in four states: 
% (3 3) (3 5) (5 3) (5 5) 
% It is assumed that the (35) and (53) states are distinguishable by 
% their location in the lattice, except when they occupy the same 
% position.  For this case, Q is ... 
Q = 500500 * (exp(-E0/(R*T)) + exp(-E2/(R*T))) + 990000*exp(-E1/(R*T)); 
 
% Determine what the derivative lnQ wrt T is 
dlnQ_dT = diff(log(Q), 'T'); 
 
% Now we define our variables of interest 
A = -k * T * log(Q); 
S = k * T * dlnQ_dT + k * log(Q); 
U = k * T^2 * dlnQ_dT; 
Cv = diff(U, 'T'); 
G = U - T*S; 
 
% Now start plugging in values for variables,  
% paying special attention to units 
E0 = 6;     % kcal/mol 
E1 = 8;     % kcal/mol 
E2 = 10;    % kcal/mol 
E0 = E0 * 1000 * 4.186;  % convert to J/mol 
E1 = E1 * 1000 * 4.186;  % convert to J/mol 
E2 = E2 * 1000 * 4.186;  % convert to J/mol 
N = 2;   % # of particles 
k = 1.3806503E-23;  % J/K 
R = 8.31451; % J/molK 
T = 298;  % K 
Nav = 6.022137E23; %Avogadro's number, mol^(-1) 
 
% Now we evaluate numbers, working inside out 
disp(['A = ', num2str(eval(A)), ' J']) 
disp(['S = ', num2str(eval(S)), ' J/K']) 
disp(['U = ', num2str(eval(U)), ' J']) 
disp(['Cv = ', num2str(eval(Cv)), ' J/K']) 
disp(['G = ', num2str(eval(G)), ' J']) 
 
U = eval(U)* Nav / 4186; 
disp(['T = ', int2str(T), ' K']) 
disp(['U = ', num2str(U), ' kcal/mol']) 
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