Readings

Chapter readings in the table are from the course text, Tester, J. W., and Michael, Modell. *Thermodynamics and Its Applications*. Upper Saddle River, NJ: Prentice Hall PTR, 1997.

SES #	TOPICS	READINGS
Part I -	Fundamental Principle	S
1	Course Outline, Motivation to Connect Classical Concepts and Laws to Physical Properties from Macroscopic to Molecular, Definitions, Nomenclature, Exams+Homework Policy, Approach to Solving Problems, Constitutive Property Models and the Ideal Gas State, Postulatory Approach, 1st Law Concepts	Handouts
2	Postulatory Approach 1st Law Concepts (Work, Heat, and Energy), Closed and Open System Treatments, including PE+KE Effects, Tank Blowdown [Demonstration - CO2 Fire Extinguisher]	Ch 1-2 (all sections), 3.1-3.8
3	1st Law Open	3.7-3.9

	Systems, Tank Blowdown and Filling - Class Examples, Problem 3.9	
4	2nd Law Concepts, Reversible Heat Engines, Carnot Efficiency, Entropy, Clausius Theorem, Reversibility[Demo- drinking Bird]	4.1-4.5
5	Entropy Balance, 1st and 2nd Laws Combined [Demo - Hilsch Vortex Tube]	4.6-4.7
6	2nd Law Concepts and Applications, Steady State and Transient Flow Work	4.8-4.9
7	Availability and Exergy Concepts, Heat Integration and Pinch Analysis, Power Cycle Analysis [Demo - Stirling Engine]	14.1-14.3, 14.5- 14.6
8	Calculus of Thermodynamics, Gibbs Fundamental Equation, Graphical Interpretation of Fundamental Surface	5.1-5.4 Thermodynamic Properties of Pure Materials (PDF)
9	Derivative Transformation and Manipulation, Maxwell Relations,	5.1-5.4

	Jacobian Transformations	
10	Legendre Transformations, Equivalent Forms of the Fundamental Equation, Examples	5.5-5.7
11	Legendre Transforms Continued, Connections to the Gibbs Surface and Other Derived Properties	5.5-5.7
12	Equilibrium Criteria Concepts and Applications Phase, Chemical, and Membrane, Phase Rule, Examples of Simple Phase Diagrams	6.1-6.7
13	Stability Criteria, Concepts and Applications, Critical States	7.1-7.2
14	Pure Component Properties, Fund. Eq., Theorem of Corresponding States, Constitutive Property Models - Stress Connections to Molecular Level Interactions and Effects	8.1-8.2
15	Real Fluid Properties, <i>PVTN</i> Equations of State,	8.3-8.4

	Ideal Gas Heat Capacity Cp*	
16	Departure Functions, Concepts and Applications, Standard ΔG° and ΔH° of Formation	8.5, 8.7-8.9
17	Mixtures, <i>PVTN</i> <i>EOSs</i> , Partial Molar Properties, Gibbs- Duhem Relation, Mixing Functions, Discuss Problem 9.2, Ideal Gas Mixtures and Ideal Solutions, Fugacity and Fugacity Coefficients, Standard States	9.1-9.7
18	Ideal Solution Conditions, Excess Properties, Activity and Activity Coefficients, ΔGEX - γ i Models (See Table 11.1), Standard States, Thermodynamic Consistency using the Gibbs-Duhem Relation	9.8, 11.2, 11.4, 11.7, 11.9
19	Mixture Equations of State, Continued and Needs	11.7, 11.9
20	Review for Exam 1	
	Exam I: 2 hours	
Part II - Introduction to Statistical Mechanics for		

the Interpretation of Thermodynamic Functions and the Computation of Thermodynamic Properties

21	Fundamental Principles of Quantum and Classical Statistical Mechanics - N-body Problem, Phase Space, Statistics and Distribution Functions and Averaging Methods, Boltzmann Distribution	10.1, handouts Fundamental Principles of Quantum and Classical Statistical Mechanics (PDF)
22	Postulates of Statistical Mechanics, Gibbs ensembles - Micro- canonical and Canonical; States of System, Probabilities	10.1, handouts Postulates of Statistical Mechanics, Gibbs Ensembles (PDF)
23	Computation of Ideal Gas Properties from Intramolecular Effects - Translation, Rotation, Vibration using Statistical Mechanics I	10.1, handouts Computation of the Properties of Ideal Gases (PDF)
24	Computation of Ideal Gas Properties from Intramolecular Effects - Translation, Rotation, Vibration using Statistical Mechanics II	 10.1, handouts Computation of the Properties of Ideal Gases (PDF) Appendix to Session 21-24 Statistical

		Mechanics Readings: Connection to Thermodynamics and Derivation of Boltzmann Distribution (PDF)
25	Classical Statistical Mechanics; Hamiltonian and Ideal Gases, Factoring the Partition Function with the Semi- classical Approximation, <i>PVTN</i> Properties via Configuration Integral from Intermolecular Effects, Grand Canonical Ensemble I	10.1, handouts
26	Semi-classical Approximation, <i>PVTN</i> Properties via Configuration Integral from Intermolecular Effects, Grand Canonical Ensemble II Examples	10.1, handouts
27	Gibbs Ensembles Continued: Micro- canonical Ensemble Revisited, Grand Canonical, NPT, etc., Including Equivalence of Ensembles; Time Averaging and	10.1, handouts

	Ergodicity, and Fluctuations; Macroscopic Connection	
28	Intermolecular Forces and Potentials, Role of Quantum Mechanics, Commonly used Potential Functions, Pairwise Additivity	10.2-10.3
29	Virial Equation of State and Molecular Corresponding States from Statistical Mechanics; Connection of <i>PVTN</i> Equations of State to Statistical Mechanics and Molecular Simulations	10.4-10.6
30	Mean Field Theory, Connecting the van der Waals EOS Model to Statistical Mechanics, Hard Sphere Fluids, Perturbed Hard Sphere Fluids, Lattice Models	10.6, 10.8
31	Statistical Mechanical Models of Fluids I - Expanding the Virial EOS to Mixtures, Radial Distribution Functions, Structure	10.7

	of Fluid and Solid Phases, Critical Phenomena (Fluctuations, Critical Opalescence)	
32	Statistical Mechanical Models of Fluids II - Biological Materials and Protein Applications	10.7
33	Foundations of Molecular Simulations - Monte Carlo and Molecular Dynamics	10.9
34	Application of Molecular Simulations to Estimating Pure Component and Mixture Properties	10.9

Part III - Multi-scale Thermodynamics of Pure Fluids and Mixtures - Physical Properties and Phase and Chemical Equilibria

35	Calculation of Pure Component Properties (Vapor Pressure, Δ <i>Hvap</i> , etc.) Using Equation of State and Other Models Departure Functions	8.5, 8.7, 8.9
36	Review of Mixture Thermodynamics, Fugacity, Fugacity Coefficient,	9.1-9.8

	Activity, Activity Coefficient, Standard States and Constitutive Models for Capturing Non- Ideal Effects	
37	Phase Equilibrium and Stability - Gibbs Phase Rule, Phase Diagrams, Using Constitutive Property Models for Capturing Non- Ideal Effects	15.1-15.2, 15.8
38	Applications of Mixture Thermodynamics to VLE Phase Equilibria, Minimum Work of Separation, etc.	9.7-9.9, 11.4, 11.7, 11.9
39-40	<i>Review for Exam</i> <i>II</i> Review of Statistical Mechanics Principles and Applications, and Pure Fluid and Mixture Properties	
	Exam II: 2 hours	
41	Phase Equilibria, Differential Approach, Constitutive Property Models Continued, <i>P-T</i> Relationships	15.3-15.4, 11.1- 11.7
42	Phase Equilibria, Integral Approach,	15.5

	Applications, Solubility - Gas - Liquid, Liquid - Liquid, and Solid - Liquid Systems	
43	Phase Equilibria Applications - Examples Colligative Properties, Ternary Diagrams, S-L-V Three Phase Monovariant Binary Equilibria, Biological Examples	
44	Phase Stability Applications, Spinodal Decomposition, Critical Points, Uses of Equations of State and Gibbs Free Energy Models, Polymer and Materials Examples, Pictures of Crystalization	7.1-7.2, 15.6- 15.7
45	Chemical Equilibrium - General Approach, Nonstoichiometric and Stoichiometric Formulation, Statistical Mechanical Approach	16.1-16.4, 16.9
46	Equilibrium Constants and Standard States, Gibbs Phase Rule	16.5-16.6

	Applications	
47	Chemical Equilibria Applications and Example Problems, Combined Phase and Chemical Equilbria	17.1-17.3
48	Review Session	
	Final Exam: 3 hours	

Supplementary References*

CLASSICAL THERMODYNAMICS

Bejan. *Advanced Engineering Thermodynamics*. Wiley, New York: 1988. [Graduate Level, mechanical engineering emphasis, generalized exergy/availability analysis].*

Bett, Rowlinson, and Saville. *Thermodynamics for Chemical Engineers*. MIT Press, 1975. [General text from a Chemical Engineering perspective].

Callen. *Thermodynamics and an Introduction to Thermostatistics*. Wiley, 1985. [Physics approach, recommended section on Legendre transformations].*

Denbigh. *Principles of Chemical Equilibrium*. 4th ed. London: Cambridge University Press, 1981. [Well-written, alternative intermediate text from a Chemistry perspective].*

Gibbs. *Collected Works I: Thermodynamics*. Yale University Press, 1963. [Historical reference].*

Gyftopoulos, and Beretta. *Thermodynamics: Foundations and Applications*. Macmillan, 1991. [Comprehensive mechanical engineering approach, power cycles, availability/exergy analysis].

Hatsopoulous, and Keenan. *Principles of General Thermodynamics*. Wiley, 1964. [Detailed theoretical, postulatory approach].

Hougen, and Watson. *Chemical Process Principles I: Thermodynamics*. 2nd ed. Wiley, 1959. [Corresponding-states principle, a classic Chemical Engineering Thermodynamics text].

Keenan, et al. *Steam Tables: Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases,* International System of Units. Wiley, 1978. [Good reference].

Pitzer. *Thermodynamics*. 3rd ed. McGraw-Hill, 1995. [Well-written, revision of classic 1923 text by G.N. Lewis and M. Randall, treats electrolytes].

Milora, and Tester. *Geothermal Energy as a Source of Electric Power*. MIT Press, 1976. [Thermodynamic treatment of low-temperature power cycles].

Prausnitz, Lichtenthaler, and Azevedo. *Molecular Thermodynamics of Fluid Phase Equilibria.* 3rd ed. Prentice-Hall, 1999. [Intermolecular forces, bridges the gap between Classical and Statistical Thermodynamics, presents many practical models for non-ideal behavior].

Prigogine, and Defay. *Chemical Thermodynamics*. London: Longmans, 1954. [Detailed, theoretical, good on mixtures and phase equilibria].

Reid, Prausnitz, and Poling. *The Properties of Gases and Liquids*. 4th ed. McGraw-Hill, 1987. [Essential for estimating thermodynamic properties].

Sandler. *Chemical and Engineering Thermodynamics*. Wiley, 1999. [Introductory, well-organized].

Smith, van Ness, and Abbott. *Introduction to Chemical Engineering Thermodynamics*. 5th ed. McGraw-Hill, 1996. [Introductory, classic chemical engineering undergrad text, well-organized].

Tisza. *Generalized Thermodynamics*. MIT Press, 1966. [Theoretical, detailed discussion of Legendre transformations].

Walas. *Phase Equilibria in Chemical Engineering*. Buttersworth, 1985. [Excellent, practical treatment of VLE and LLE].

Weber, and Meissner. *Thermodynamics for Chemical Engineers*. 2nd ed. Wiley, 1957. [Well-written, introductory text].

STATISTICAL MECHANICS

Chandler. *Introduction to Modern Statistical Mechanics*. Oxford, New York, 1982. [Concepts and modern theory, particularly helpful for phase transitions.]

Callen. *Thermodynamics and an Introduction to Thermostatistics*. 2nd ed. Wiley, 1985. [Critical-point scaling theories.]

Debenedetti. *Metastable Liquids*. Princeton University Press, 1996. [Modern treatment of experimental data and theories regarding stability and criticality.]

Hill. *Statistical Mechanics - Principles and Selected Applications*. Dover, 1987. [Advanced text covering basic aspects of liquid state theory.]

Hirshfelder, Curtiss, and Bird. *Molecular Theory of Gases and Liquids*. Wiley, 1954. [Excellent comprehensive treatment of theory and early work.]

Huang. *Statistical Mechanics*. Wiley, 1987. [Advanced text with extensive discussion of Ising models.]

McQuarrie. *Statistical Mechanics*. Harper Row, 1976. [Good detailed treatment of classical statistical mechanics.]*

Pathria. *Statistical Mechanics*. 2nd ed. Butterworth-Heinemann, 1996. [Intermediate text, with a thorough coverage of phase transitions and condensed matter theory.]

Reed, and Gubbins. *Applied Statistical Mechanics*. Butterworth-Heinemann, 1973. [Intermediate level text with a solid treatment of intermolecular potentials and some liquid state theory.]

Reif. *Fundamentals of Statistical and Thermal Physics*. McGraw-Hill, 1965. [Introductory text with clear explanations of basic concepts of statistical mechanics, motivated from probability theory.]

Rowley. *Statistical Mechanics for Thermophysical Property Calculations*. Upper Saddle River, NJ: Prentice-Hall, 1994. [Clear basic treatment, including simulation methods, written by a Chemical Engineer.]

Stanley. *Introduction to Phase Transitions and Critical Phenomena*. Clarendon Press-Oxford, 1971. [A classic text in its field, with clear discussions of scaling relations and critical exponents.]

Yeomans. *Statistical Mechanics of Phase Transitions*. Clarendon Press-Oxford, 1992. [An introductory text, simpler than Stanley, with discussions of a number of techniques commonly used in studying the behavior of many-body systems.]

MOLECULAR SIMULATIONS

Allen, and Tildesley. Computer Simulation of Liquids. Oxford, 1987. [Classic treatment.]

Frenkel, and Smit. *Understanding Molecular Simulation*. Academic Press, 1996. [Good overview with more recent advances than Allen and Tildesley.]

*Starred references are of particular value in supplementing text readings.