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Introduction to
Matrix Algebra

1-1. DEFINITION OF A MATRIX

An ordered set of quantities may be a one-dimensional array, such as
Qag, Azy ..,y

or a two-dimensional array, such as

Q11,1250 -5 Ayp
QA21, 4225 - - -5 A2 .
Amys n2s -+« 5 Amn

In a two-dimensional array, the first subscript defines the row location of an
element and the second subscript its column location.

A two-dimensional array having m rows and n columns is called a matrix
of order m by n if certain arithmetic operations (addition, subtraction, multi-
plication) associated with it are defined. The array is usually enclosed in square
brackets and written as*

Ay Q2 "7 Oy

a a ceva

‘21 '22 :Zn — [aij] = g (1_1)
Amy  Om2 "' Omp

Note that the first term in the order pertains to the number of rows and the
second term to the number of columns. For convenience, we refer to the order
of a matrix as simply m x n rather than of order m by n.

* In print, a matrix is represented by a boldfaced letter.
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A matrix having only one row is called a row matrix. Similarly, a matrix
having only one column is called a column matrix or column vector.* Braces
instead of brackets are commonly used to denote a column matrix and the
column subscript is eliminated. Also, the elements are arranged horizontally
instead of vertically, to save space. The various column-matrix notations are:

Ciy Cy
¢ c
21 9~ fen e = fo) = ¢ (1-2)
énl én

If the number of rows and the number of columns are equal, the matrix is said
to be square. (Special types of square matrices are discussed in a later section.)
Finally, if all the elements are zero, the matrix is called a null matrix, and is
represented by 0 (boldface, as in the previous case). -

Example 1-1

3 x 4 Matrix

1 x 3 Row Matrix

[3 4 2]
3 x I Colurmn Matrix
3 3
45 or |4]or{3,4,2}
2 2

2 x 2 Square Matrix

i
o o)

* This is the mathematical definition of a vector. In mechanics, a vector is defined as a quantity
having both magnitude and direction. We will denote a mechanics vector quantity, such as force
or moment, by means of an italic letter topped by an arrow, e.g., F. A knowledge of vector algebra
is assumed in this text. For a review, see Ref. 2 (at end of chapter, preceding Problems).

2 x 2 Null Matrix
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1-2. EQUALITY, ADDITION, AND SUBTRACTION OF MATRICES

Two matrices, a and b, are equal if they are of the same order and if cor-
responding elements are equal:

a = b when aij = bij (1“3)
If ais of order m x n, the matrix equation
a=>»
corresponds to mn equations:
i=12....m
Gy =1by .
j=12,...,n

Addition and subtraction operations are defined only for matrices of the same
order., The sum _of two m x n matrices, a and b, is defined to be the m x n
matrix [a; + b;;]:

(a1 + [by] = [as; + by] (1-4)

' lai;] = [by] = [a; — b] (1-5)
For example, if
o2 1 0 -1 —1
”*[1 0 ~J b'[3 1 0]
1 1 0
+b=
a [4 1 —1}

1 3 2
a—b=
[—2 -1 -1]

It is obvious from the example that addition is commutative and associative:

Similarly,

then

and

a+b=>b+a (1-6)
at+b+c)=@+b)+ec 1-7

1-3. MATRIX MULTIPLICATION

' Thej product of a scalar k and a matrix a is defined to be the matrix [kaj;],
1 which each element of a is multiplied by k. For example, if

. -2 7
k=5 and =

K —-10 +35
a =
10 S

then
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Scalar multiplication is commutative. That is,
ka = ak = [ka,;] (1-8)

To establish the definition of a matrix muitiplied by a column matrix, we
congsider a system of m linear algebraic equations in n unknowns, x;, X1, ..., X,:

agyXy + agpXy + 00 4 AgeXy = €
Ap1Xy + AppXy + 0+ Xy = €y (1-9)
A1 Xy + GmaXy + 0+ QX = Cm

This set can be written as

n
zaikxk:ci i=1,2,...,m (a)
k=1 )

where k is a dummy index. Using column matrix notation, (1-9) takes the form

. {Z aikxk} = {C,'} i = l,2,...,m (1“’"10)
k=1
Now, we write (1-9) as a matrix product:

Lai] {x} = {a:}

Since (1-10) and (1-11) must be equivalent, it follows that the definition
equation for a matrix multiplied by a column matrix is

i=12...,m (1-11)
Jj=12,...,n

ax = [aij] {xj} = {Z a,'k.xk} i = 1., 2, PR /1 (1—‘12)

k=1
This product is defined only when the column order of a is qual to the row
order of x. The result is a column matrix, the row order of which is equal to
that of a. In general, if a is of order r x s, and x of order s x 1, the product
ax is of order r x 1.

Example 1-2
I -1 2
a=|8 —4 X = 3}
0 3
1@ + (=1B3) -1
ax =<B)2) + (-4Q3), = 4
O + B3)3) 9

SEC. 1-3. MATRIX MULTIPLICATION 7

We consider next the product of two matrices. This product is associated
with a linear transformation of variables. Suppose that the r original variables
Xy, X2,. .., X, in (1-9) are expressed as a linear combination of s new variables
YisYas ooy Yst

Xp = Z bkjyj k= 1, 2,..,,71 (1”‘13)
j=1

Substituting for x, in (1-10),
{Z aij(z bk])’])} = {Ci} I: 1, 2,...,)’" (a)
k=1 j=1
Interchanging the order of summation, and letting

n

i=12....m

o= b, . -
bij k; whi (1-14)
the transformed equations take the form
{Z psjy,} ={a} i=12..,m (1-15)
i=1

Noting (1-12), we can write (1-15) as
py =c¢ (1-16)

where pis m x sand yiss x 1. Now, we also express (1-13), which defines
the transformation of variables, in matrix form,

X = by (1-17)
where bis n x s. Substituting for x in (1-11), . '
aby =c¢ , A (1-18)

and requiring (1-16) and (1-18) to be equivalent, results in the following
definition equation for the product, ab:

i=12,....m

ab = [aik] [bkj] = [pij] k = 1, 2, NN (] (1*19)
i=12,...,s
Dij = Z aikbkj

This product is defined only when the column order of a is equal to the row
order of b. In general, if 4 is of order  x 7, and b of order n x g, the product
abis of order r x g. The element at the ith row and Jjth column of the product
is obtained by multiplying corresponding elements in the ith row of the Jirst
matrix and the jth column of the second matrix.
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Example 1-3
10
a = 11 b—[l 1 0 —1:1
B “lo1 -1 3
0 2

OO+ OO WO+ O | OO +O0-D R CVESUIE)
ab = |(~1)(1) + (DO) | (=1)1) + WD | (= DO) + D=1 H=D-D) + (1HO)
O + @0 OW+@0 1 ©O)+@=D PO)=1+ 20

+1 +1 0 -1

ab = {—1 0 -1 +4

0 +2 -2 +6

If the product ab is defined, a and b are said to be conformable in the order
stated. One should note that a and b will be conformable in either order only
when a is m x nand b is n x m. In the previous example, a and b are con-
formable but b and a are not since the product ba is not defined.

When the relevant products are defined, multiplication of matrices is as-
sociative,

a(be) = (ab)e (1-20)

and distributive,

a(b + ¢) = ab + ac

(b + cja = ba + ca (-2

but, in general, not commutative,
ab # ba (1-22)

Therefore, in multiplying b by a, one should distinguish premultiplication, ab,
from postmultiplication ba. For example, if a and b are square matrices of order
2, the products are '

ayr 412 by b12] — [a“b“ + ay2bay } agbys + 0121722]
Azy Gz || b2 bia Aa21b11 + az2bay I| ay1bia + a22b3o
byy b1z [au a12] _ [b“a” 4+ bizaz; | biiaiz + blZaZZ}
= |
byi baa || G21 Q22 byiary + b22tay byiaia + baza22
When ab = ba, the matrices are said to commute 01 to be permutable.

1-4. TRANSPOSE OF A MATRIX

The transpose of a = [a;;] is defined as the matrix obtained from a by
interchanging rows and columns. We shall indicate the transpose of a by
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a’ = [af]:

Ay1  diz ayn |
a = [a~~] {21 Qa2 7 Az
] - * .
Gn ) . . : (1-23)
Upy G2 G _
Ayy Gy "7t Gy |
T _r,T dya Uz "7 &
a’ = [afj]=1. . e
(n xm) :
Agn  Uzp """ dyn |

- 1‘ . .
The element, a}, at the ith row and jth column of a”, where now i varies from 1

to n and j from 1 to m, is given by
T
da;; = Qji (l *24)
where a;; is the element at the jth row and ith column of a. For example,

3 2
a=|7 1 aT=[:Z 7 5:'
5 4 214

Since the tranquse of a column matrix is a row matrix, an alternate notation
for a row matrix is

[as, az, ... an] = {a}T (1-25)

W.e consider next the transpose matrix associated with the product of two
matrices. Let

p = ab (@)

whgre aism x nand bis n x 5. The product, p, is m x s and the element

Dij» 18 ’

" i=1,2,...,m
Py =Y auby SO
¢ RZI Kok I= 19 2.9‘-'75 (b)

The transpose of p will be of order s x m and the typical element is
Pl = ps {c)

where now i = 1,2,...,sand j = 1,2,...,m. Usi 1-24
e o , ng ( ) and (b), we can

n

n
r - =1,2,...,s
Pl = ). apbu = ), bia A
k=1

i
j=412,...,m @

It follows from (d) that
pT = (ab)” = bTa” (1-26)

Equation (1-26) states that the transpose of a product is the product of the
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transposed matrices in reversed order. This rule is also applicable to multiple
products. For example, the transpose of abe is

(abe)” = c¢"(ab)” = c’bTa” (1-27)
Example 1-4
32
2
a=\|71 h={ 1
_15
5 4

4
ab = 13} @ab)’ =[4 13 6]
6

Alternatively,
375

a7={2 X 4} =02 -1]

(ab)” = bTa” = [2 —1][3 Z j]=[4 13 6]

1-5. SPECIAL SQUARE MATRICES

If the numbers of rows and of columns are equal, the matrix is said to be square
and of order n, where n is the number of rows. The elements a;; Q = 1, 2,.‘ .., h)
lie on the principal diagonal. If all the elements except the prmcq?al-dxagonal
elements are zero, the matrix is called a diagonal matrix. Wg will use d for
diagonal matrices. If the elements ofa diagonal mat;ix’ arcall unity, ‘ic diagonal
matrix is referred to as a unit matrix. A unit matrix is usually indicated by L,
where n is the order of the matrix.

Example 1--5

Square Matrix, Order 2

Diagonal Matrix, Order 3

Unit Matrix, Order 2
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We introduce the Kronecker delta notation:

o; =0 | % ]
o+l is 1-29
With this notation, the unit matrix can be written as
L=[6;] i&j=12...,n (1-29)
Also, the diagonal matrix, d, takes the form
d = [d4,] (1-30)
where dy, d,, . . ., d, are the principal elements. If the principal diagonal elements
are all equal to k, the matrix reduces to '
[kéi;] = k[oi;] = K1, (1-31)

and is called a scalar matrix.

Let a be of order m x n. One can casily show that multiplication of a by a
conformable unit matrix does not change a:

2l = a (1-32)

I.a=a
A unit matrix is commutative with any square matrix of the same order.
Similarly, two diagonal matrices of order n are commutative and the product
is a diagonal matrix of order n. Premultiplication of a by a conformable
diagonal matrix d multiplies the ith row of a by d; and postmultiplication
multiplies the jth column by d;. : " ‘

2 0)f3 0] (3 0)f2 o] _[6 O
0 —1f{o 5| |o s|lo —-1] [0 -5
2 o3 1] [ 6 2
0 —1fl2 7] |-2 -7
3 1[2 0] {6 —1
|2 7j0 L] [4 -7]
A square matrix a for which a;; = a;; is called symmetrical and has the
property thata = a”. Ifa; = —a; (i # j)and the principal diagonal elements
all equal zero, the matrix is said to be skew-symmetrical. In this case,a” = —a.

Any square matrix can be reduced to the sum of a symmetrical matrix and a
skew-symmetrical matrix: ‘

Example 1-6

a=b+c

(1-33)

It

by = 3(a; + ap)
¢ij

1
3
L
Z(Qij - aji)
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The product of two symmetrical matrices is symmetrical only when the matrices
are commutative.* Finally, one can easily show that products of the type
(aTa)  (aa®)  (a"ba)

where a is an arbitrary matrix and b a symmetrical matrix, result in symmetrical

matrices.
A square matrix having zero elements to the left (right) of the principal
diagonal is called an upper (lower) triangular matrix. Examples are:

Upper Triangular Matrix

35 2]
7 1
0 0 4]
Lower Triangular Matvix
_} 01
570
2 1 4]

Triangular matrices are encountered in many of the computational procedures
developed for linear systems. Some important properties of triangular matrices
are:

1. The transpose of an upper triangular matrix is a lower triangular matrix

and vice versa.
2. The product of two triangular matrices of like structure is a triangular
matrix of the same structure.

a0 } bi 0 }z[‘lgﬁa ,,,,,,,,,,,, Lo
azy G2z || b1 D22 ayibyy + azabay | axzbys
1-6. OPERATIONS ON PARTITIONED MATRICES

Operations on a matrix of high order can be simplified by considering the
matrix to be divided into smaller matrices, called submatrices or cells. The
partitioning is usually indicated by dashed lines. A matrix can be partitioned
in a number of ways. For example,

|
ayy 4y Qg3 Qyy Qg2 | Ay iy Gy | Q13
[ T (S _2
a = jdyy Qpp Az3f = |y Q22 _ll dy3 | = |dz1 dz f azs
asy dsz 0433 a3y dsz | dss ds1 dsz2 | dss

Note that the partition lines are always straight and extend across the entire
matrix. To reduce the amount of writing, the submatrices are represented by

* See Prob. 1-7.
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a single symbql. We will use upper case letters to denote the submatrices
whenever possible and omit the partition lines.

Example 1--7
We represent
Ay1 42 } dy3
a=!d, a,, { Ay
Az Az Sr sy
as
_ [An A1z] Ay A,
a= or a= B
Ay Ay A, A,,
where

dyn1 dys dps
Ay = Ay, =
Az Az (2%

Ay = fasl 032} A,y = [6133]

If two m'a.trices of the same order are identically partitioned, the rules of
matrix addition are applicable to the submatrices. Let

Ay Ay B, By, ‘
a= b = —
I:All AZZ B21 BZZ] (1 34)
where B;; and A;; are of the sume order. The sum is |
!
ath= [.ﬁ%}._tﬁ_u__%_f}_zzi_B},z " (1-35)
21 + By | Ay + By,

The rules of matrix multiplication are applicable to partitioned matrices
provided that the partitioned matrices are conformable for multiplication. In
gene‘ra'll, two partitioned matrices are conformable for multiplication if the
partitioning of the rows of the second matrix is identical to the partitioning of
the columns of the first matrix. This restriction allows us to treat the various
submatrices as single elements provided that we preserve the order of mul-
tiplication. Let a and b be two partitioned matrices:

i=1,2...,N
| '
bo[B, =L2. .M (139
k=1,2...,8
We can write the product as
¢ = ab = [C,]
M .
=12,...,N
Co= Y AB, |~ oo -
k j:—_zl Ik :1,2,...,S (1 37)

when the row partitions of b are consistent with the column partitions of a.
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As an illustration, we consider the product
agy apz ars| [by
ab = Uy dzp Q423 bz
asy ds; aas| |bs
Suppose we partition a with a vertical partition between the second and third
columns.

|
dyy Q12 Q13
i
a = |0y; Ay : daz| = [A11A12]
az; azy | da;

For the rules of matrix multiplication to be applicable to the submatrices of a,
we must partition b with a horizontal partition between the second and third

rows. Taking .
b,

b = !?_{ — {gll}
b3 21

B
ab = [AA] {B“} = ABy + ABy,
B,

the product has the form

The conformability of two partitioned matrices does not depend on the
horizontal partitioning of the first matrix or the vertical partitioning of the
second matrix. To show this, we consider the product

ayy @z ay| by biy
ab = |a;; ay; dxz| | by by
asy @z dzzf | bay b3y

Suppose we partition a with a horizontal partition between the second and
third rows: :

agy Q12 dy3
a=|u a a = At
= fdyy Az dzz) =
Ay

Since the column order of A;; and A, is equal to the row order of b, no
partitioning of b is required. The product is ,

| Au | Ayb
2= [Au:l b= [Aub}

As an alternative, we partition b with a vertical partition.

by | bia
b = b21 E bzz - [BilBil}
b3y I b,

In this case, since the row order of B, and B, is the same as the column
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order of a, no partitioning of a is necessary and the product has the form
ab = a[BUBQ] = [aB“ } aBlzj

To transpose a partitioned matrix, one first interchanges the off-diagonal
submatrices and then transposes each submatrix. If

All AIZ e Aln
a = {‘21 Azz e AZ"
Aml AmZ e Am/x
then (1-38)
A1T1 Agx o A;£1
al = A;FZ Agz o A);[IZ
A{n A:2rn U A;{;n

A particular type of matrix encountered frequently is the quasi-diagonal
matrix. This is a partitioned matrix whose diagonal submatrices arc square of
various orders, and whose off-diagonal submatrices are null matrices. An

cxample is
agy 0 O

a=10 dz2 Qi3
0 sz as3

which can be written in partitioned form as

Ay 0 R
a= [0 Az] = [A,()U]

Al - [a“:’ Az _ [azz 6123]

where

a3y Qas

apd 0 denotes a null matrix. The product of two quasi-diagonal matrices of
like structure (corresponding diagonal submatrices are of the same order) is
a quasi-diagonal matrix of the same structure.

AL 0 - 0[B 0 -0 AB; 0 0 )

0 Az e 0 0 BZ 0 0 lszz

Do N A : (1-39)
0 0 - A0 0 - B |0 0 - AB

where A; and B; are of the same order.
W; use theT term quasi to distinguish between partitioned and unpartitioned
matrices having the same form. For example, we call

Ay 0 ’
[An AzzJ (1-40)

a lower quasi-triangular matrix.
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1-7. DEFINITION AND PROPERTIES OF A DETERMINANT

The concept of a determinant was originally developed in connection with
the solution of square systems of linear algebraic equations. To illustrate how
this concept evolved, we consider the simple case of two equations:

Ap1Xy + A%y = € (a)
Gz1X1 + G22X3 = C
Solving (a) for x; and x,, we obtain
(@11G27 — G12831)X1 = C1la7 — €205 (b)
(@11G2; — G12G21)X7 = —C1ay1 + Ca0y4 ’

The scalar quantity, a, ,a,, — d,a,1, 15 defined as the determinant of the second-
order square array a;; (i, j = 1, 2). The determinant of an array (or matrix) is
usually indicated by enclosing the array (or matrix) with vertical lines:

a a
1 12 = ‘a‘ = dy1dyy — dy20;54 (1*41)

(a1 Q22

We use the terms array and matrix interchangeably, since they are synony-
mous. Also, we refer to the determinant of an nth-order array as an nth-order
determinant. It should be noted that determinants are associated only with
square arrays, that is, with square matrices.

The determinant of a third-order array is defined as

dyy Gyp dys +ay dyalsy — Ay dy3das
Gy Gap Q3| = =—d12031433 + d1202303, (1-42)
a3y dzz QA33 +a1303103; — Q13022031

This number is the coefficient of x,, x,, and x;, obtained when the third-order
system ax = c¢ is solved successively for x, x,, and x;. Comparing (1-41) and
(1-42), we see that both expansions involve products which have the following
properties:

1. Each product contains only one element from any row or column and
no element occurs twice in the same product. The products differ only

in the column subscripts. _
2. The sign of a product depends on the order of the column subscripts,

€., +0ay,0,,053 and —a,,a,3d5,,
These properties are associated with the arrangement of the column subscripts
and can be conveniently described using the concept of a permutation, which

is discussed below.

A set of distinct integers is considered to be in natural order if each integer
is followed only by larger integers. A rearrangement of the natural order is
called a permutation of the set. For example, (1, 3, 5) is in natural order and
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(1,5, 3)is a permutation of (1, 3, 5). Ifan integer is followed by a smaller integer,
the pair is said to form an inversion. The number of inversions for a set is defined
as the sum of the inversions for each integer. As an illustration, we consider
the set (3, 1, 4, 2). Working from left to right, the integer inversions are:

Integer Inversions Total
3 (3, 1)3,2) 2
1 None 0
4 4,2 1
2 None 0
3

This set has three inversions. A permutation is classified as even (odd) if the
total number of inversions for the set is an even (0dd) integer. According to
this convention, (1, 2, 3) and (3, 1, 2) are even permutations and (1, 3, 2) is an
odd permutation. Instead of counting the inversions, we can determine the
number of integer interchanges required to rearrange the set in its natural order
since an even (odd) number of interchanges corresponds to an even (odd)
number of inversions. For example, (3, 2, 1) has three inversions and requires
one interchange. Working with interchanges rather than inversions is practical
only when the set is small.

Referring back to (1-41) and (1-42), we see that cach product is a permutation
of the set of column subscripts and the sign is negative when the permutation
is odd. The number of products is equal to the number of possible permutations
of the column subscripts that can be formed. One can casily show that there
are n-factorial* possible permutations for a set of » distinct integers.

We let (ay, @, ..., a,) be a permutation of the set (1,2,..., n) and define
Coruz - g, &S ’ :

Coar g = +1 when (o, a5, . . ., a,) is an even permutation
(1-43)
Caray oy = — 1 when (e, @, . . ., o) is an odd permutation

Using (1-43), the definition equation for an nth-order determinant can be
written as

Ay Ay T ag,
Qa1 Qaz " dy,
: . : = Zeamz oy i Ao, g, (1 —44)
Ut dua " Gy

where the summation is taken over all possible permutations of (1, 2,:. ., n).

* Factorial n = n! = n(n — 1){n = 2)--- (2)1).
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Example 1-8

The permutations for n = 3 are

o =1 oy =12 oy =3 €123 = +1
oy =1 oy =3 oy =2 €13 = —1
oy =2 oy =1 o3 =3 €313 = —1
oy =2 o, =3 oy =1 ey3; = +1
<Z1=3 ‘ZZ:l d3:2 3312=+1
oy =3 oy = 2 oz = 1 €321 = —1
Using (1-44), we obtain
a1 42 dy3 A11Q322433 — 411423432
Q1 G2z Q3| = —d32031033 + Q1202303
as; dsy 4ss +a13031032 — 01302203

This result coincides with (1-42).

The following properties of determinants can be established™ from (1-44):

1. If all elements of any row (or column) are zero, the determinant is zero.

2. The value of the determinant is unchanged if the rows and columns are
interchanged; that is, ja”| = |a|.

3. Iftwo successive rows (or two successive columns) are interchanged, the
sign of the determinant is changed.

4. Ifall elements of one row (or one column) are multiplied by a number k,
the determinant is multiplied by k.

5. If corresponding elements of two rows (or two columns) are equal or in
a constant ratio, then the determinant is zero.

6. If each element in one row (or one column) is expressed as the sum of
two terms, then the determinant is equal to the sum of two determinants,
in each of which one of the two terms is deleted in each element of that
row (or column). )

7. If to the elements of any row (column) are added k times the cor-
responding elements of any other row (column), the determinant is
unchanged.

We demonstrate these properties for the case of a second-order matrix. Let
a = [au (‘112:}
a1 42

[a| = Q11032 — Q12021

The determinant is

Properties 1 and 2 are obvious. It follows from property 2 that [a”| = |a|. We

* See Probs. 1-17, 1-18, 1-19.
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illustrate the third by interchanging the rows of a:
a; a
a = [ 21 22
a1y Az
la/| = 181y — Q1A = *fal

Property 4 is also obvious from (b). To demonstrate the fifth, we take

ay; = ka ay,; = ka
Then 11 22 = Kkag,
[a| = a;((ka;,) — ayo(kay,) = 0
Next,lo 12 12lkayy)
ayy = by + ¢y aiz = by + ¢y
According to property 6,
lal = [b] + c]
where
jbf _ Zu by, lc] = |11 Cr2
21 Qa3 dyy o Ay

This result can be obtained by substituting for a,, and ay, in (b). Finally, to
illustrate property 7, we take ’
biy = ay; + kay,
by, = ay, + kay,
byy = ay,

bys = ay,y
Then,

lb' = (a1 + kayy)az;, — (ay; + kayz)ay, = ]a{

1-8. COFACTOR EXPANSION FORMULA

If the row and column containing an element, ai;, in the square matrix, a,
are de:lctcd3 the determinant of the remaining square array is called the minor
of a;;, .and is denoted by M ij» The cofactor of u; j» denoted by Ay, is related to
the minor of M;; by

A," - (“ 1)i+jMi‘ 1“45 |
As an illustration, we take ’ ’ ( )
3 28
a=|1 7 4
5 31
The values of M;; and 4;; associated with a3 and a,, are
3 2
M,; = !5 3 = -1 Azs = (=1)’M,; = +1
- 38
Mzz—_—!s 1!2 —37 A22:(~1)4M22= —37
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Cofactors occur naturally when (1-44) is expanded* in terms of the elements
of a row or column. This leads to the following expansion formula, called
Laplace’s expansion by cofactors or simply Laplace’s expansion: T

n n

]3| = Z ag Ay = Z aijkj (1-46)
k=1 k=1
Equation (1-46) states that the determinant is equal to the sum of the products
of the elements of any single row or column by their cofactors.
Since the determinant is zero if two rows or columns are identical, if follows
that

n

Z a,.kAgk =0 r#EI

= (1-47)
Z aks-Akj =0 S ] N

k=1 -

The above identities are used to establish Cramer’s rule in the following section.

Example 1-9
(1) Weapply (1-46) to a third-order array and expand with respect to the first row:

Ay Q2 g3
dyy Gz O3
a3y a3z 43z
dz; U Gy dz2

It

ay(—1)? + ay(—1)° + ags(~1)*

dzy;  dz3
3

a3y 432

3
a3y A3z dsy
ay1{@22033 — d23a32) + @12{ 03,033 + a23031) + A33(a21032 — G22031)

I

To illustrate (1-47), we take the cofactors for the first row and the clements of the second
row:

3
Z Az
k=1 . .
= y1(A22833 — 23032) + A2a(—a33033 + G23031) + Gz3(A21037 ~ G22a31) = 0
(2) Suppose the array is triangular in form, for example, lower triangular. Expanding
with respect to the first row, we have

a;; O 0

dz2
ay; @3 0 | =ay,

= (a1 )(a22033) = 11022033
dyz Q33

azy dzp a3

Generalizing this resuit, we find that the determinant of a triangular matrix is equal to
the product of the diagonal elements. This result is quite useful.

* See Probs. 1-20, 1-21.
t See Ref. 4, sect. 3-15, for a discussion of the general Laplace expansion method. The expansion
in terms of cofactors for a row or a column is a special case of the general method.
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The evaluation of a determinant, using the definition equation (1-44) or the
cofactor expansion formula (1-46) is quite tedious, particularly when the array
is large. A number of alternate and more efficient numerical procedures for
evaluating determinants have been developed. These procedures are described
in References 9—-13. :

Suppose a square matrix, say ¢, is expressed as the product of two square
matrices,

¢ =ab (a)

and we want |c|. It can be shown* that the determinant of the product of two
square matrices is equal to the product of the determinants:

le| = [a] [b] - (1-48)

Whether we use (1-48) or first multiply a and b and then determine |ab| depends
on the form and order of a and b. If they are diagonal or triangular, (1-48)
is quite efficient. T

Example 1-10

ey
1 3 2 3
P IR
la] = —4 b} =5 ] = —20
Alternatively,
5 15
¢ = [11 29} and ¢ =-20 ~
V3]

.o 13 b= 2 0
1o 5 114
laj=5 =8 = +40

Determining c first, we obtain

5 12
¢ = [5 20] and le] = +40

1-9. CRAMER’S RULE

We consider next a set of n equations in n unknowns:
n
'Zajkxk:Cj j:1,2,...,n ' (a)
k=1 .

* See Ref. 4, section 3-16.
T See Prob. 1-25 for an important theoretical application of Eq. 1-48.
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Multiplying both sides of (a) by 4;,, where r is an arbitrary integer from 1 to n,
and summing with respect to j, we obtain (after interchanging the order of
summation)
% <Z ajkAjr) Xe= ), Aic (b)
k=1 \j=1 j=1
Now, the inner sum vanishes when r # k and equals |a| when r = k. This
follows from (1-47). Then, (b) reduces to

lalx, = Y Ajc; (©
=1
The expansion on the right side of (c) differs from the expansion
n :
la| = Z‘ ajp Ay (d)
=

only in that the rth column of a is replaced by ¢. Equation (c) leads to Cramer’s
rule, which can be stated as follows:

A set of n linear algebraic equations in n unknowns, ax = ¢, has a
unique solution when ]a| # 0. The expression for x, (r = 1,2,...,n) is
the ratio of two determinants; the denominator is Ia} and the numerator
is the determinant of the matrix obtained from a by replacing the rth
column by c¢.

If ja| = 0, a is said to be singular. Whether a solution cxists in this case will
depend on ¢. All we can conclude from Cramer’s rule is that the solution, if
it exists, will not be unique. Singular matrices and the question of solvability
are discussed in Sec. 1-13.

1-10. ADJOINT AND INVERSE MATRICES

We have shown in the previous section that the solution to a system of n
equations in n unknowns,

a1 {x;} = {ci} Lj=1,2...,n (@)
can be expressed as
1 n
xi::—ZAjicj i:1727"'3n (b)
jal ;=

(note that we have taken r = i in Eq. ¢ of Sec. 1-9). Using matrix notation,
(b) takes the form
1
x; = = [4i]{c}} )

la|

Equation (c) leads naturally to the definition of adjoint and inverse matrices.

SEC. 1-10. ADJOINT AND INVERSE MATRICES 23
We define the adjoint and inverse matrices for the square matrix a of order n as

adjointa = Adja = [4,;]" ‘ (1-49)
. 1
inversea = a~ ! = —! Adja ‘ {1-50)

a

Note that the inverse matrix is defined only for a nonsingular square matrix.

Example 1-11

We determine the adjoint and inverse matrices for

1 2 3
a=|[2 3 1}
4 1 2
The matrix of cofactors is
5 0 -10
[4]=1{~-1 —10 +7
-7 +5 -1
Also, Ja] = —25. Then
5 ~1 —7
Adja = [4,;]" = 0 —10 +5
-10 +7 -1
1 —1/5 +1/25 +7/25
a“1=|~a~tAdja= 0 +2/5 -1/5

+2/5 =7/25 +1/25

Using the inverse-matrix notation, we can write the solution of (a) as

-1

c (d)
Substituting for x in (a) and ¢ in (d), we see that a~! has the property that

X=a

a'la=aa"l =] (1-51)
Equation (1-51) is frequently taken as the definition of the inverse matrix
mstead of (1-50). Applying (1-48) to (1-51), we obtain
[ fa] = 1 |

It fol.lov.vs that (1-51) is valid only when a| # 0. Multiplication by the inverse
matrix is analogous to division in ordinary algebra.

If a is symmetrical, then 2~ ! is also symmetrical. To show this, we take the
transpose of (1-51), and use the fact that a = a”:

(a—la)T — aa~1,T = I

n
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Premultiplication by a™* results in

a T =a !

and therefore a~ ' is also symmetrical. One can also shqw* that, fo§ any
nonsingular square matrix, the inverse and transpose operations can be inter-
changed: I 152
We consider nexf the inverse matrix associated with the product of two square

ices. Let
matrices . ab

where a and b are both of order n x n and nonsingular. Premultiplication
=1 and then h™?! results in
b alc=b
b'a" e = 1,
It follows from the definition of the inverse matrix that
(ab)~ ! = b~ ta”? (1-53)

In general, the inverse of a multiple matrix product is equal to the product of
the inverse matrices in reverse order. For ecxample,

(abed)™ ' =d 'c7ib7a” !
" The determination of the inverse matrix using the definition equation (1-50)

is too laborious when the order is large. A number of inchsion. procedures
based on (1-51) have been developed. These methods are described in Ref. 9-13.

1-11. ELEMENTARY OPERATIONS ON A MATRIX

The elementary operations on a matrix are:

j lumns.
1. The interchange of two rows or of two co
2. The multiplication of the elements of a row or a column by a number

other than zero. - ]
3. The addition, to the elements of a row or column, of k times the cor

responding element of another row or column.

These operations can be effected by premultiplying (for row operation}[ or
postmultiplying (for column operation) the matrix by an appropriate matrix,

called an elementary operation matrix. '
We consider a matrix a of orderm x n. Suppose that we want to interchange

rowsjand k. Then, we premultiply aby anm X # matrix obtained by modifying
the mth-order unit matrix, L, in the following way:

1. Interchange 6;;and d.
2. Interchange J,, and 5ka.

* See Prob. 1-28.
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For example, if a is 3 x 4, premultiplication by

0 0 1
0 1 0
1 00

interchanges rows 1 and 3 and postmultiplication by

interchanges columns 2 and 4. This simple example shows that to interchange
rows, we first interchange the rows of the conformable unit matrix and pre-
multiply. Similarly, to interchange columns, we interchange columns of the
conformable unit matrix and postmultiply.

The elementary operation matrices for operations (2) and (3) are also obtained
by operating on the corresponding conformable unit matrix. The matrix which
multiplies row j by o is an mth order diagonal matrix having d, = 1 for i # j
and d; = o. Similarly, postmultiplication by an nth order diagonal matrix
having d; = 1 for i # jand d; = « will multiply the jth column by a. Suppose
that we want to add o times row j to row k. Then, we insert « in the kth row
and jth column of I, and premultiply. To add « times column j to column k,
we put ¢ in the jth row and kth column of I, and postmultiply.

We let e denote an clementary operation matrix. Then, ea represents the
result of applying a set of elementary operations to the rows of a. Similarly,
ae represents the result of applying a set of elementary operations to the columns
ofa. In general, we obtain e by applying the same operations to the conformable
unit matrix. Since we start with a unit matrix and since the elementary opera-
tions, at most, change the value of the determinant by a nonzero scalar factor,*
it follows that e will always be nonsingular.

Example 1-12

We illustrate these operations on a third matrix:

112 15
a=| 37 2
-2 1 5

We first:

1. Add (—3) times the first row to the second row.
2. Add (2) times the first row to the third row.

* See properties of determinants (page 18).
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These operations are carried out by premultiplying by

1

-3
ti
and the result 18 o 1
0 112 75
0 2 27/5
Continuing, we multiply the second row by 2/11:
1 0 oyt 12 s 1 12 /5
0 2/11 ol}o 112 75 | =10 1 14/55
0 0 1110 2 27/5 0 2 27/5 )
Next, we add (—2) times the second row to the third row:
1 o Ooffr 12 s 1oy2 s
0 1 ojio 1 14/55] = |0 1 14/55
0 -2 1ilo 2 275 0 0 269/55
Finally, we multiply the third row by 55/269. The complete set of operations 1
1 00 1 o o}ft 0 0 1 00 112 15
010 01012/110~310 3725
0 0 552691 [0 -2 110 © i 20 1}{-21
1 12 s
=10 1 14/55| = b
00 1

a square matrix to a triangular mMatrix using

i illustre duction of . :
T e e on. e sis for the Gauss elimination solution scheme

elementary operations on tows, and is the ba
(Refs. 9, 11, 13). We write the result as
’ ea=Dh
where e is the product of the four operation matrices listed above:
1 0 0

e = |—6/11 2411 0
+1870/2059 —220/2959  55/269

g with a unit matrix. This is more

erations, startin: !
o , he various steps.

We obtain e by applying successive pera - . “
convenient than listing and then multiplying the operation matrices for

The form of e after each step is listed below:
Initial Step 1 Step 2
1 00 1 00 1 0 0
010 -3 10 -6/11 211 0
0 01 2 01 2 0 1
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Step 3 " Step 4
~6/11 2/11 0 —6/11 Y11 0

+34/11 —4/11 0] | +1870/2959 —220/2959  55/269

Two matrices are said to be equivalent if one can be derived from the other
by any finite number of elementary operations. Referring to Example 1-12, the
matrices

37 2 and |0 1 14/55
-2 1 5 0 0 1

are equivaleht, In general, a and b are equivalent if
b = paq (1-54)

where p and q are nonsingular. This follows from the fact that the elementary
operation matrices are nonsingular.

1-12. RANK OF A MATRIX

The rank, r, of a matrix is defined as the order of the largest square array,
formed by deleting certain rows and columns, which has a nonvanishing deter-
minant. The concept of rank is quite important since, as we shall see in the
next section, the solvability of a set of linear algebraic equations is dependent
on the rank of certain matrices associated with the set.

Let a be of order m x n. Suppose the rank of a is r. Then a has r rows
which are linearly independent, that is, which contain a nonvanishing deter-
minant of order r, and the remaining m — r rows are linear combinations of
these r rows. Also, it has n — r columns which are linear combinations of r
linearly independent columns.

To establish this result, we suppose the determinant associated with the first r
rows and columns does not vanish. If a is of rank », one can always rearrange
the rows and columns such that this condition is satisfied. We consider the
(r + Dith-order determinant associated with the first r rows and columns, row
p, and column g where r < p < mr < g n

all a12 BEPEN alr alq
Az Oy 70 Gy Gy

A=l S (1-55)
Ay Gz "7 Gy Gy
Gy QG Gy

We multiply the elements in row j by 4,;(j = 1,2, ...,r) and subtract the result
from the last row. This operation will not change the magnitude of A, (see
Sec. 1-7). In particular, we determine the constants such that the first r elements
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in the last row vanish:
ay; Gz 7 ey [t ayy
Q5 Gz ° 77 a,, 4p2 _ <'l{,2 (1*56)
alr aZr Gy /‘pr apr

Equation (1-56) has a unique sofution since the coefficient matrx is non-

singular. Then (1 —55) reduces to

i
Qyy Gy Ay 1‘ 1q
a
dyy Y2 Gy, ) Cag
= ' R (1-57)
Ay+1 - X | ,t
451 a/r,z_.,,,___‘_‘,flf_r,_,.‘p._(.{%&
0 0 0 1 ay|
where )
Apt
y)
2 (1-58)
ahy = Apg — [a1g Q2g - - - ] § -
Jepr

Applying Laplace’s expansion formula to (1-57), we sec that A, ., vanishes

when 4{) = 0. o
Now, if a is of rank r, A, ., vanishe

follows that

s for all combinations of p and ¢. It

Jpt 1
' fen2 gq=r+1...,n (1-59)
apq:[am,(lzqa--.,arq] ',p p:r+l,r+2,..v,m
Ay
Combining (1-56) and (1-59), we have
ayy, G 7 9n Apt apy
4, @y 0 G| Al )02l o e 2, m (1260)
élln &Zn U dm }“pr apn

. - tions
Equation (1-60) states that the last m — r rows of a are hnear} combmfa;xzrrxe
of the first r rows. One can also show* that the last n — r columns O

linear combinations of the first r columns.
e1-13 M

Exampl
Consider the 3 x 4 matrix L1 s
a=12 1 3 2
5 7 12 14

* Gee Prob. 1-39.
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We see that a is at least of rank 2 since the determinant associated with the first two rows
and columns is finite. Then, the first two rows are linearly independent. We consider the
determinant of the third-order array consisting of columns 1, 2, and ¢:

L2 ay,
Ay =2 1 ay
5 7 as,
Solving the system,
Ao+ 22, =5
W+ =17
we obtain :
Ay =3 Ay =1

Ifa is of rank 2, A5 must vanish. This requires
A3q = A1y, + Ay, = 3a5, + ay,
q=34

Since a;3 and aj, satisfy this requirement, we conclude that a is of rank 2. The rows are
related by .
(third row) = +3 (first row) + (second row)

One can show* that the elementary operations do not change the rank of
a matrix. This fact can be used to determine the rank of a matrix. Suppose b
defined by (1-61) is obtained by applying elementary operations to a. We know
that b and a have the same rank. It follows that a is of rank p. A matrix having
the form of b is called an echelon matrix. When a is large, it is more efficient
to reduce it to an echelon matrix rather than try to find the largest nonvanishing
determinant:

{ (pxp) b | wxta=p
h ]
dyn @z "7t dag 12 & {
Qyy Qzp ~°° Az, 0 1 bz‘”; ! By,
A . . =bh = : & ! (1-61)
: : : i
Omi Quz " Oy QNQ‘_,()__.__:I__%_JR--
i
(tn=p) % p) b (m=pyx i)
Example 1-14
1 2 3 4
a=|2 1 3 2
5 7 12 12

First, we eliminate a,, and as;, using the first row:
1 2 3 4
a =10 -3 -3 -6
0 -3 -3 -8
* See Prob. 1-40.
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. L
Next, we climinate a$}

At this point, we see thatr = 3. Too :
p—- 1/2, and interchange the third and fourth columns:

row by

INTRODUCTION TO MATRIX ALGEBRA

, using the second row:

—~1 2 3 4
=] 0 -3 -3 -6
0 0 0 -2

12 43
b=10 1 2 1
0010

Sup

One can show* that the rank of a cannot be greater than the

(m xs) (mxn) ("X‘?)
a = b ¢

of r associated with b and ¢:

r(a) < min [r(b), r(c)]

As an illustration, consider the product

Since each matrix is of rank 2, the rank of a will be

we obtain

—12 +12 o]
a:[dﬂ +12 1

0 0
=10 1

It follows that a is of rank 1.

CHAP. 1

btain b, we multiply the second row by — 1/3, the third

pose.a is expressed as the product of two rectangular matrices:

. (1-62)

minimum value

(1-63)

1
1
0
<2. Evaluating the product,

1-13. SOLVABILITY OF LINEAR ALGEBRAIC EQUATIONS

We consider first a system of two equat

Suppose a is of rank 2 and

* See Prob. 1-44.

xl N
azy Q12 013] X, b = {H}
ayy G2z 423 Ca

X3

ayy diz

azy daz

jons in three unknowns:

(1-64)

(1-65)
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Ifa is of rank 2, we can always renumber the rows and columns such that (1-65)
is satisfied. We partition a and x,

Q= [all G2 | a13] =[A; A;] (1-66)
ayy day | dz3
X = le %
T2 T X,
X3

and write (1-64) as A;X; + A,X, = ¢. Next, we transfer the term involving
X to the right-hand side: :

A1X1 = ¢ — A2X2 (1‘“67)

Since ]A 1! # 0, it follows from Cramer’s rule that (1-67) has a unique solution
for X,. Finally, we can write the solution as

X, = A{le — AXy) (1-68)

Since X, is arbitrary, the system does not have a unique solution for a given ¢.
The order of X, is generally called the defect of the system. The defect for this
system is 1. '

If a is of rank 1, the second row is a scalar multiple, say A, of the first row.
Multiplying the second equation in (1-64) by 1/4, we have

ag1Xq + GyaXy + dg3X3 = ¢y
ay1Xy + a12X; + ay3x3 = C2f4

(1-69)
If ¢, # Acy, the equations are inconsistent and no solution exists. Then, when
a is of rank 1, (1-64) has a solution only if the rows of ¢ are related in the same
manner as the rows ofa. Ifthis condition is satisfied, the two equations in (1-69)
are identical and one can be disregarded. Assuming thata;; # 0, the solutionis

xy = (Yay)(cy — agax; — agsxs) (1-70)

The defect of this system is 2.
The procedure followed for the simple case of 2 equations in 3 unknowns is
also applicable to the general case of m equations in » unknowns:

Ayr Q12 " G | | Xy cy
Az Az "7 Gan | ) X2l € 1-71)
Amy Gm2 "7 Oy Xg ] C

If a is of rank m, there exists an mth order array which has a nonvanishing
determinant. We rearrange the columns such that the first m columns are
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linearly independent. Partitioning a and x,

' ..
Ay G2 0 Qim { A1, m+1 Qin
- o
axy dzz C.IZm } C_lz,m+1 lan | _ [ A, A, ]
: : { . : mxm)  (mx(n~m))
C.lml pz """ Amm = A, m+1 """ Cgn (1‘72)
e [ eox =1 X, X, }
{x1 x3 Xm ) Xmt1 n$ {(nle) (i nhy
we write (1-71) as .
AXy =c— AX, (1-73)

Since |A4] # 0, (1-73) can be solved for X.‘ in terms of ¢ and‘ X{z. The fitefefst
of the set is n — m, that is, the solution involves n — m arbitrary constan

fe%f;;‘;‘:: abi}; )offz rank r where r < m. Theq, a has r rows vyhich contain ar;
rth-order array having a nonvanishing determinant. The remaining m — ; row
are linear combinations of these r rows. For (1-71) to be consistent, t :;t is,
have a solution, the relations between the rows of ¢ must be the same as those

for a. The defect for this caseisn — r.

Example 1-15
As an illustration, consider the third-order system

a11Xy + ApXy + ay3xXs = ¢
a
Az1Xy + A23X; -+ A33X3 = € (@)

a31Xy + a3pXy + 033X3 = C3
Suppose that r = 2 and the rows of a are related by
(third row) = 4, (first row) + 4, (second row) (b)
For (a) to be consistent, the elements of ¢ must satisfy the requirement,
€3 = Ai1¢; + AaCy (©)

To show this, we multiply the first equation in (a) by ‘—)11, the second by — 4, and add to
these equations the third equation. Using (b), we obtain

0 =c3 — Agcy — AyCy (d)
Unless ihe right-hand side vanishes, the equations are contradictory or inconsistent and no

solution exists. When ¢ = 0, (c) is identically satisfied and we see that (a) has a non:rmal
solution (x # 0) only when r < 3. The general case is handled in the same manner.

* See Prob. 1-45.
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In general, (1-71) can be solved when r < m if the relations between the rows
of a and ¢ are identical. We define the augmented matrix, a, for (1-71) as

v 412 0 4, | o
]
azy dz; - a | Cy
i E T = (1-74)
: : Lo
Uy Qpy - [4 || Con

When the rows of a and ¢ are related in the same way, the rank of & is equal to
the rank of a. It follows that (1-71) has a solution only if the rank of the aug-.
mented matrix is equal to the rank of the coefficient matrix:

Ho) = r(a) . (1-75)

Note that (1-75) is always satisfied when "a) = m for arbitrary c.

We can determine r(o) and r(a) simultaneously using elementary operations
on a provided that we do not interchange the elements in the last column. The
reduction can be represented as

| :
#=bkd= [‘6“"?“@75] (1-76)

where A{" is of rank r(a). If C{ has a nonvanishing element, r(er) > #(a) and
no solution exists. ,

When ro) = r(a), (1-71) contains r independent equations involving n un-
knowns. The remaining m — r equations are linear combinations of these
r equations and can be disregarded. Thus, the problem reduces to first finding
o) and then solving a set of r independent equations™in n unknowns. The
complete problem can be efficiently handled by using the Gauss elimination
procedure (Refs. 9, 11, 13).
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PROBLEMS
1-1. Carry out the indicated operations:
(a)
1 40 2 35
3 2 1| +1(7 13
510 0 56
(b)
2.7 31 (-4 | 5
516 3 -1 2
© 1 2 1 1 2 3
IR IR
(d)
1 -2 {2}
-3 4115
(©
-1 1] |4 1]
2 =312 3
®

0

1-2. Expand the following products:

(@

las, az, - -5 @] (b1, b2y s by}
(b)

{al’ A2y v s an} [_bb bly DRI bn]
©

[Cl 0] {au alz}
0 ¢ {21 @22

(d)

51

S2:

can be written as

PROBLEMS

dyy agal ey O
dyy dj 0 Cy

1-3. Show that the product of

3
ay +ay +as= ) @

3
b1+b2+b3zzbk

3 3
S183 = Z Z akbj

k=1j=1

Generalize this result for the sum of n elements.

1-4. Suppose the elements of a and b are functions of y. Let

_ [‘_I‘Ek db _ |dby
dy dy - >d“v~

then

da_
dy
Using (1-19), show that if
c
de
dy

1-5

= ab
gl
dy dy

35

Consider the triple product, abc. When is this product defined? Let

p = abc

Determine an expression for p;;. What is th i
g e order of p? Determine p;;
case where ¢ = a”. N P iy for the

1-6. Evaluate the following products:

(a)

i

(a+b)a+b

3
2

JE

where a is a square matrix.

1-7. Show that the product of two s s .
ymmetrical matrices is symm
only when they are commutative. ymmetrical

1-8. Show that the following products are symmetrical:

(@)
(b)
©

aTa
a’ba

b%a%cab

where b is symmetrical

where ¢ is symmetrical



36 INTRODUCTION TO MATRIX ALGEBRA CHAP. 1

1-9. Evaluate the following matrix product, using the indicated sub-
matrices: )

130 2]]2 1
2 1 3|13
4 1] 2115 1

1-10. Let ¢ = ab. Show that the horizontal partitions of ¢ correspond to
those of a and the vertical partitions of ¢ correspond to those of b. Hint: See
Eq. (1-37).

1-11. A matrix is said to be symmetrically partitioned if the locations of
the row and column partitions coincide. For example,

|
apy Gp2 ; a3
azy da ; a3
dzy a3 } 33

! |
agy : ayz E ags
Ay | Qa2 | a3
ol SO A
as; | 43z ; dss

is unsymmetrically partitioned. Suppose we partition a square matrix with
N — 1 symmetrical partitions.

a=[A”] i,j=1,2,...,N
(a) Deduce that the diagonal submatrices are square and A,,, AT have

the same order.

(b) Ifa = aT, deduce that A, = AT

1-12. Consider the product of two square nth order matrices.
¢ =ab

(a) If a and b are symmetrically partitioned, show that Cy, Ay, By, are of
the same order. Illustrate for the case of one partition, e.g.,

(b) Suppose we symmetrically partition ¢. What restrictions are placed
on the partitions of a and b? Does it follow that we must also partition
a and b symmetrically? Hint: See Prob. 1-10.
1-13. Consider the triple product,

c=a'ba
where b is a symmetric rth-order square matrix and a is of order » x n. Suppose

we symmetrically partition c. The order ofthe partitioned matrices are indicated

in parentheses.
(pxp)  (pxq)

(nén) . Cll C12

B CZX CZZ

(gxp)  (axq

Generalize this result and establish that t
when two rows are interchanged.

PROBLEMS

QS . o
(2) Show that the following partitioning of a is consistent with that of

(rxn) rxp) (rxg)
a = [Al AZ }

,2) 1'1_1 terms of Ay, A,, and b.
quasi-diagonal matrix. Show that

da = [D;A;]
bd = [B, D]
¢ conformably partitioned,

(b) Express C;, (j, k = 1
1-14. Letd = [D,] be s

when the matrices ar

1-15.  Determine
following sets.

(a)
4,3,1,2)
®) (3,4,2,1)

1-16. How man ;
Y permutati .
1-17.  Consider the terms ons does (1, 2,3, 4, 5) have?

and Carany Q1ay Gag, Uy (@)

, .
ﬁxﬂzﬁsaﬁxlaﬂzzaﬂ 3
The first subscripts i i 3 %% o
s Pts in (a) are in natural ord i
e i ; lral order. We obtain (b i
hat the second subscripts are in natural order. For éx;x?pllw:a;g:?rg;ng'(a)
s hging

. €2310134d33a =
we Obtaln 1512 %23 @34 o = (21 3) 1)

€312031 415 Ay,

N . =312
ow that if (a,, a,, o3) is an even permutatio

permutation. Using this result, show that ™ (Br. Ba, fz) ds also an even

€, Ay, Ay, A = Y
; 12203 ¥ La; Y20, A3y, %aeﬂlffzﬂsaﬂx‘aﬂﬂa/}_‘s

and, in general,

| ol = Ja]
1-18. Consider the terms
eﬁmzaaalzxa2cxza3z3 (a)
Suppose that CriaansDia,baubs, (b
bl“l = a2a1 b2az = alaz b313 = a3,
Then, (b) takes the form )
Show that e ©
() = —(a)

he sign of a determinant is reversed
1-19.  Consider the third-order determinant

lal = Zedmczas 1,024,034,

37

C.

the number of inversions and interchanges for the
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Suppose the second row is a multiple of the first row:
oy = kot

Show that| | = 0.(Hint: e,,5,4, = —€,,4,,,)- Generalize this result and establish

properties 5 and 7 of Sec. 1-7.

1-20. Suppose all the integers of a set are in natural order except for one
integer, say n, which is located at position p. We can put the set in natural
order by successively interchanging adjacent integers. For example,

312 - 132 - 123
231 - 213 - 1223

Show that |n — p| adjacent interchanges (called transpositions) are required.
It follows that the sign of the resulting set is changed by

(—1)in—#l
1-21. We can write the expansion for the thi{d-order determinant as
3 . .

Sou(Tremaen) U7
Using the result of the previous problem,

: e = (— l)ii—llejk = (”l)iﬂf«’jk (b)
and (a) reduces to \ ,

izlan("l)iHMu = iz1a“A“ (©

Following this approach, establish Laplace’s cofactor expansion formula for
an nth-order determinant.
1-22. Use Laplace’s expansion formula to show that

1 0 -0 io 0 0
0 1 e 0 { 0 0 0 0
. . . 1 . wxp)  (pxn
S)#_ 0 1._{ 0 o - 0 | | *[al
by bys bl[) bl dyr 412 Gy Ty T |7
{ (nxpy ' (nxn)
1?21 1‘722 %’2,; I G dy Aan
N . . | .
. - N . l
bnl an e bnp = anl an?_ T Oy

1-23. Consider the quasi-diagonal matrix,

(pxp) (pxq)
1

0 D,

@xp) (gx9

g=|P: O[T ©
o 1, {{0o D,

d:

By expressing d as

PROBLEMS 39
show that |[d| = D, |D,|. Verify this result for |

1100
d = 23 00
0 0 2 1
0 0 5 3
Generalize for
d = [A, 6i~
1-24. Let 2
(pxp) (pxq)
Gy, 0
g = .
G21 G22
Show that @xn taxa
lgl = ]Gul iGzz{

Generalize for a quasi-triangular matrix whose diagonal submatrices are square,
of various orders. '

1--25. Suppgse Wwe express a as the product of a lower triangular matrix, g,
and an upper triangular matrix, b.

Ay Gy o ay, g1 O 0 by by, o by,
'{121 f’zz T Gy, - 1921 922 " 0 0 b,, b,
anl anZ e ann gnl gnZ T gnn O O T bnn

We introduce symmetrical partitions after row (and column)-p and write the
product as
(pxp) (pxq) (pxp) (pxq)_  (pxp) (pxg)
[All AlZ] = Gll 0 Bll BIZ
AZI A22 GZ 1 GZZ 0 B22
@xp)  {gxgy @xp)  (axa)” “@xp (gxq

Note that the diagonal submatrices of g and b are triangular in form.
(a) Show that

G,B,, = Au
G11B12 = Ay,
szBu = A21

G21B12 + G5By, = Az
(b) Show that
IAIII = {Glll lBII'
and
la| = [G11[[G,] [B,] B,
(c) Suppose we require that
lgf #0 |b] %0
By taking p = 1,2, .. Sn= 1, deduce that this requirement leads to the
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following n conditions on the clements of a:

4,y
dpr G2x 7 Dyl j=1,2,....n
@y G T 4y

The determinant of the array contained in the first j rows and columns 15 called

the jth-order discriminant. ‘ ‘ »
1{26. Does the following set of equations have a umque solution?

12 3] ix 2
I 3 5{<x,pr =43
307 11 |x 5

1-27. Determine the adjoint matrix for

1 2 3
a=1]13 5
37 11

Does a™ ! exist? )
1-28. Show thatb™ "7 = p7 !
1-29. Find the inverse of

® 13
3 2
®) 2 4
135
© 1 31{2 4
3 24115
@ 2 01[2 4
0 3j[t 5
Let
a,, 4y | a,J
11 12 :) A“ Au
a= |l @2 | D3 THA A,
a3y d3; | 433
and
a—1=[B11 Bll]
Bll B22

where the order of By is the same as Aj,. Starting with the condition

PROBLEMS 41

determine the four matrix equations relating B, and A (j, k = 1, 2). Use this
result to find the inverse of

— N
Do N

4
2
1
I, A
0 1,
D, 0
=[5

1-33. Use the results of Probs. 1-31 and 1-32 to find the inverse of

_[Bu B
b*[o BZJ

where Byy, B, are squarc and nonsingular. Hint: write b as

b— By, O[T B /'B;,B ][I 0
10 1i10 1 0 B,

1-34. Consider the 3 x 4 matrix

1-31. Find the inverse of

Note that A is(p x q).
1-32. Find the inverse of

(NSRS
i S o

1
2
1

-
i
e

Determine the elementary row operation matrix which results in a,; = a3y =
a3y = 0and ayy = dzp; = dzz = "f‘l

1-35. Let
(pxp) (pxq)
(nén) . All A12
Az Ay

gxp) (gxq)

where |A;,| # 0 and |a| # 0. Show that the following elementary operations
on the partitioned rows of a reduce a to a triangular matrix. Determine A

I, 0 L 0[AR O0][An Al [L AY
0 C||-Ay L]0 LA A |0 4
C= (Azz"AzlAﬁlAlz)ml
1-36. Suppose we want to rearrange the columns of a in the following way:

2 3 coll — col 3
1 3 col 2 — col 1
4 5 col3 = col 2

o
I
(ST SR
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(a) Show that postmultiplication byIl{which is called a permutation matrix)
results in the desired column rearrangement:

0 01
m=4{1 0 0
010

Note that we just rearrange the corresponding columns of I.
(b) Show that premultiplication by IIT rearranges the rows of a in the
same way.
(¢) Show that II"II = 1.
(d) Generalize for the case whereaisn x n.
() Show that _
[Iax] = |
1-37. Letabeoforder2 x n, where n > 2..Show that a is of rank 1 when
the second row is a multiple of the first row. Also, show that when r = 1, the

second, third, . . ., nth columns are multiples of the first column.
1-38. Determine the rank of
(@)
1 3 7
5 2 4
3 -4 —10
(b)

1 2 3 —1
2 4 6 -2
-1 =2 =3 1

1-39. Let a be of order m x n and rank r. Show that a has n — r columns
which are linear combinations of r linear independent columns. Verify for

1 2 3 4
a=|2 1 3 2
5 7 12 14

1-40. Using properties 3, 4, and 7 of determinants (sec Sec. 1-7), deduce
that the elementary operations do not change the rank of a matrix. For con-
venience, consider the first r rows and columns to be linearly independent.

1-41. Find the rank of a by reducing it to an echelon matrix.

B R
= =
NO o W
~ o~ NN

PROBLEMS 43

1-42. Show that ¢ is at most of rank 1.
4
a
c = :2 (bibs - b,]

am

When will #c) = 09
1-43. Consider the product,
ayy  ap,
¢c=lay a, [bublz by,
: : b21b22 e b2n
Ay ('lmZ

(a) Suppose b is of rank land by; # 0. Then, we can write

{blk} = bu
bZk k b21 k=2,3,...,1’l

Show that the second, third
how < N , -, th columns of ¢ ; i
® gust column and therefore He) < 1. When wﬁl i(i;e:m(;l;tlples of the
uppose 1(a) = 1 and a;; # 0. In this case, we can write.

[aﬂaﬂ] = ij[a“au] _] = 2, 3,...,m
Show that the second, thifd, .. »mthrows of ¢ are multiples of the first

row and therefore #{¢) < 1. .
1-44. Consider the prodgzgt\ When will r(e) = 0?

At G2 - ay, by, by, - bin
¢ = a.z1 a?z Ty || by by -+ b2,
: : .' o : : (@)
Let aml am T s bsl sz T bsn

Aj = [aja; - a;)
’ B, = {blkak T bsk} ®)
Using (b), we can write (a) as
Ay

A .
c = :2 fB1Bz"‘Bn] ©
A'I‘l
Suppose r(a) = r

» 7(b) = r,. For convenience '
: ¢ , WE assume t
of a and the first ¥y columns of b are linearly independent. Thenh © frst o rows

g
Aizzlijp j:ra+1,7"a+2,...m
p=1 ’ ’
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"p
Bk= Z&quq k:;‘b+1,rb+2,...,n
q=1

(a) Show that rows r, + 1,r, + 2,...,m of ¢ are linear combinations of
the first r, rows.

(b) Show that columns r, + 1,1, + 2, ..., nof ¢ are linear combinations
of the first r, columns.

(c) From (a) and (b), what can you conclude about an upper bound on

rc)?
(d) To determine the actual rank of ¢, we must find the rank of
Al 4‘\1B1 A1B2 te AlBrb
B, A.B, - A,B
f}z [BB, - B,] = /:\2 1 /:\z 2 f:\z o
Ara AraBl AraBZ cte A"aB"b

Suppose r, < r,. What can.you conclude about r(c) if A{ is orthogonal
toBy,B;,...,B,?
(e) Utilize these resuits to find the rank of

—-1/2 12 0}t 0 1
—-1/2 12 i1t 0 1
-1 TR O N B
(f) Supposer, = r, = s. Show that #c) = 5. Verify for
103

1 -1 1
2 =2 [ J
3 ( 1 2 4

1-45. Consider the m x n system

dyy Gz 0 Qa1 Xy ¢y
Qzy daz "7 dap | ) X3 Cy
Ay Amz """ g Xn Cm
Let
A; = (a0, 4] j=12,....m (b)
Using (b), we write (a) as
Ax=c¢ j=12,...,m (c)

Now, suppose a is of rank » and the first » rows are linearly independent. Then,
A, = ilﬂ.kpAp k=r+1Lr+2,...,m
(a) Show that the Z;Stem 1s consistent only if
Cr = i}ikpcp k=r+1Lr+2...,m
p=

Note that this requirement is independent of whether m < norm > n.

PROBLEMS 45

(b) %f n}z1 <mnand r = m, the equations are cousistent for
s this also true when m > nand j = n? llustrate for

[1 1 IJ '“ {cl
X =
1 2 4 _\,j 52}
‘1 2 {X1}: 62
1 4|t

1-46. Consider the following system of equations:

an arbibrary c.

and

Xp+ X2 + 2x3 + 2x, = 4
2xl+xz+3X3+2X4=:6
3x, + A% 4 2%3 +x, =9
Txy + Tx; + 9x5 + Txq = 23
(@) Determine whether the above system is consisfent using clementary

operations on the augmented matrix
(b) Find the solution in terms of Xg.



