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13-12. Specialize Equations (13-84) and (13-85) for the case where the
cross section is symmetrical with respect to the X, axis. Utilize

”He(»\’z, X3)H (X2, x3)d4 = 0

where H, is an even function and H, an odd function of x;. Evaluate the co-
efficients for the channel section of Example 13-5. Finally, specialize the
equations for a doubly symmetric section.

13-13. Specialize (13-88) for a doubly symmetrical cross section. Then
specialize further for negligible transverse shear deformation due to flexure and
warping. The symmetry reductions are

Hint: Omne can write

3V26,, + X3 V3,)dA
1

Also show that
3 = fﬁz

X, =X3=0 Xar = X3 = 0

,BZ =63:ﬁd) =0 ]/A23 =0

Ma=n3 =741 =n =0

13-14. Consider the two following problems involving doubly symmetric
cross section.

(a) Establish “linearized” incremental equations by operating on (13-88)
and retaining only lincar terms in the displaccment increments.
Specialize for a doubly symmetric cross section (see Prob. 13-12).

(b) Consider the case where the cross section is doubly symmetric and the
initial state is pure compression (I'y = — P). Dctermine the critical
load with respect to torsional buckling for the following boundary
conditions:

I. wy=f=0 atx =0, L (restrained warping)

df _

2. wg = e 0 atx =0, L (unrestrained warping)
dx
Neutral equilibrium (buckling) is defined as the existence of a nontrivial
solution of the linearized incremental equations for the same external
load. One sets
171 = —P
Uy = U3 = W :w2:(03:f20

and determines the value of P for which a nontrivial solution which
satisfies the boundary conditions is possible. Employ the notation
introduced in Example 13-7.

13-15. Determine the form of ¥, the strain energy density function (strain
energy per unit length along the centroidal axis), expressed in terms of displace-
ments. Assume no initial strain but allow for geometric nonlinearity. Note
that ¥ = V* when there is no initial strain.

14

Planar Deformation of a
Planar Member

14-1. INTRODUCTION: GEOMETRICAL RELATIONS
A member is said to be planar if—

1. The centroidal axis is a plane curve.

2. The plane containing the centroidal axis also contains one of the
principal incrtia axes for the cross section.

3. The shear center axis coincides with or is parallel to the centroidal axis.
However, the present discussion will be limited to the case where the
shear center axis lies in the plane containing the centroidal axis.

We consider the centroidal axis to be defined with respect to a global reference
frame having directions X; and X,. This is shown in Fig. 14-1. The orthogonal
unit vectorsﬂdgﬁning the orientation of the local frame (Y, Y,) at a point are
Eienoted by 1y, t;, where ¢; points in the positive tangent direction and £; x 7, =
t3. Item 2 requires Y, to be a principal inertia axis for the cross section.

X

X

Fig. 14-1. Geometrical notation for plane curve.
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426 PLANAR DEFORMATION OF A PLANAR MEMBER CHAP. 14
By definition,

- dr  dxy dx,

fi == iy + —=1 14-1

'ttt (14-1)

Since we are taking i, according to f; x f, = 13, it follows that

1y, (14-2)

The differentiation formulas for the unit vectors are

di, 1.
=,
S R (14-3)
dt, 1 :
s~ R
where
1 di.l - dle dXZ dzxz dx1

R=das 27 s as TasT s

According to this definition, R is negative when df,/dS points in the negative
t, direction, e.g., for segment AB in Fig. 14-1. One could take f, = i, the unit

normal vector defined by
1 di,

TR ds (14-4)
dS

rather than according to f1 X i, = i3 but this choice is inconvenient when
there is a reversal in curvature. Also, this definition degenerates at an inflection
point, i.e, when df/dS = 0. If the sense of the curvature is constant, one can
always orient the X,-X, frame so that i, coincides with 7, to avoid working

with a negative R.
To complete the geometrical treatment, we consider the general parametric

representation for the curve defining the centroidal axis,

x1 = x(y) )
Xz = X3(¥) (14-5)

where y is a parameter. The differential arc length is related to dy by

o\ 2 I\ 242
ds = + il_\l + &2 dy = o dy (14-6)
dy dy

According to this definition, the +S sense coincides with the direction of

T We summarize here for convenience the essential geometric relations for a plane curve which
are developed in Chapter 4.

SEC. 14-
2. . FORCE-EQU!LJBRIUM EQUATIONS

Increasing y. Using (14-6), the expressions for 7,

7 1 /dx, dx
Iy = — —7 + A2l
o (dy 1 dy l-’-)

o .
Lo (14-7)
, -4
R o dy
A (nds ey
dvt dy T gy

427

{2, and 1/R in terms of yare

A planar member subj i
' ‘ jected to in-plane fore :
will eXpetience only in-plane deformation, LIer? (\f/(hlz;Xz e or out o o

) . the line ;

solution proc . ar geometric case, :

and IP cedurc.es, nhamely, the displacement and force meth The two bgsm
applied to a circular member. methods, are described

We also present a simplified formulation
yahd for a shaliow member. Finall
integration techniques, since one nuf:t
the cross section is not constant \

on (Marguer@’s equations) which is
.e Include a discussion of numerical
resort to numerical integration when

14-2, FORCE-EQUILIBRIUM EQUATIONS

Fig. 14-2,
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components are with respect to the local frame (Y, Y,, Y3) rather than the
basic frame (X, X,, X3). The cross-scctional properties are defined by

A = ([dy,dy, = [[d4 )
Iy = [[(y2)?dA I, = [[(y3)* dA (14-8)

Since Y,, Y5 pass through the centroid and are principal directions, it follows
that

[fy2dd = [[vs3d4 = [[y,y5d4 = 0 (14-9) -

When the member is planar (X,-X, plane) and is subjected to a planar

loading,
& Fs =M =M, =20 (14-10)

In this case, we work with reduced expressions for F . and M., (see Fig. 14-3)
and drop the subscript on M;:
Fy = Fiiy + Fafy’
—* prms a2 (14-11)
M+ = M3[3 = JW[3
Note that #5 is constant for a planar member.

X, . 1.‘2?;

Centroidal axis t3= 1 X f

Xy

Fig. 14-3. Force and moment components in planar behavior.

To establish the force-equilibrium equations, we consider the differential
volume element shown in Fig. 14—4. We define b and i as the statically equiva-
lent external force and moment vectors per unit arc length acting at the centroid.
For equilibrium, the resultant force and moment vectors must vanish. These
conditions lead to the following vector differential equilibrium equations:

gg +bh=0
. ' (14-12)
dM

Z§_+7ﬁ+E‘XF+:

i

(el
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We expand b and i in terms of the unit vectors for the local frame:

3 - 3

Introducing the component expansions in (14—12), and using the differentiation
formulas for the unit vectors (14-3), lead to the following scalar differential

equilibrium equations:

dF, F,

9 TR Th=0

dF, F,

=z ) = 4-14
ot tbha=0 (14-14)
dM .

—dS— + fz +m =20

Note that the force-equilibrium equations are ceupled due to the curvature.
The moment equilibrium equation has the same form as for the prismatic case.

bds

Fig. 14—4. Differential element for equilibrium analysis.

The positive sense of the end forces is shown in Fig. 14-5. We work with
components referred to the local frame at each end. The end forces are related
to the stress resultants and stress couples by

‘It:_Bj - jISB .
My = Mls, (14-15)
Fa= —Fjs,

IWA = —'M‘SA _] = 1, 2

14-3. FORCE-DISPLACEMENT RELATIONS; PRINCIPLE OF VIRTUAL
FORCES . :

We establish the force-displacement relations by applying the principal of
virtual forces to a differential element. The procedure is the same as for the
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prismatic case described in Sec. 12-3, except that now we work with displace-
ment components referred to the local frame at each point. We define iiand @ as
ii =y u;t; = equivalentt rigid-body translation vector at the
centroid. (14-16)
@ = Y wif; = equivalent rigid-body rotation vector

i

For planar deformation, only u,, u, and o, are finite, and the terms involving
3, ®4, and w, can be deleted:

= u ity + uyl, (14-17)

@ = wyt; =wis;

The positive sense of the displacement components is shown in Fig. 14-6.

Yp2

Fig. 14—5. Convention for end forces.

X

Uyly

Centroidal axis

Xy

Fig. 14-6. Definition of displacement measures.

1 “Equivalence” refers to work. See (12--8).
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We define IZ* as t}_le complementary energy per unit arc length. For planar
deformation, V* = V* (F, F,, M). One determines V* by taking expansions
for the stresses in terms of F, F,, M, substituting in the complementary energy
density, and integrating with respect to the cross-sectional coordinates y,, ys.
We will discuss the determination of V* later.

Specializing the three-dimensional principle of virtual forces for the one-
dimensional elastic case, and writing

- é V* (*V* 617*
aV* = —— AF — AF — AM
et gE A a8
= e, AFl + e, AF, + kAM
lead to the one-dimensional form
[sley AFy + ey AF, + k AM)S = Y d, AP; (14-19)

where d; is a displacement measure and P; is the force measure corresponding
to d;. The virtual-force system (AF,, AF,, AM, AP;) must be statically permis-
sible, i.¢,, it must satisfy the one-dimensional equilibrium equations.

(14-18)

Fig. 14-7. Virtual force system

We apply (14-19) to the differential element shown in Fig. 14-7. The virtual
force system must satisfy the force-equilibrium equations (14-17),

L AF, =0

ds
. o (a)
ES‘;AM+ + El X AI+ =0

Evaluating ) d; AP,

du d(l) )
AP, = {AF N _d. A ds

(b)
duy  uy du2 dow
= — 1 — —_— - dS
{AF1<dS R)—I—AI} <d§ + 0)>+AMdS
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and then substituting in (14-19) results in the following relations between the
force and displacement parameters:

I A TR .
“TeF, Tus TR
ovE  du, uy
A B 14-20
“2=GF, Ta TR ( )
o O _dw
T aM  dS

We interpret e; as an average extension, e, as an average transverse shear
deformation, and k as a bending deformation. Actually, k is the relative rotation
of adjacent cross sections, In what follows, we discuss the determination of 77*,

Consider the differential volume element shown in Fig. 14-8. The vector
defining the arc 0Q, is

00, = T2 ay = (511 byt '3) dy (2)

N dy Ya d; Y3 dy
Noting that
dr -
@:ml
di, -
g;::«ﬁtl (b)
diy =
-

for a planar member, (a) can be written as

ds, = ‘Q@ll = & (1 - %) dy = <1 - 2;;) ds (C)

By definition, ¥V* is the complementary energy per unit length along the
centroidal axis. Substituting for dS, in the general definition, we obtain

VEdS = {{ V*dS,dv,dy,

Y2,¥3

(-4

In general, V* = V* (0,4, 012, 013). We select suitable expansions for the
stress components in terms of Fy, F,, M, expand V*, and integrate over the
cross section. The only restriction on the stress expansions is that they satisfy
the definition equations for the stress resultants and couples identically:

”o‘udA=F1 j‘[alsz:Fz ﬁaudA:O
H.Vzﬂu d4 =0 ““j.[)’szu a4 =M (a)
55()’2013 — Y30.d4 = 0

(14-21)
17*

il
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The most convenient choice for ¢, is the linear expansion,t

F, M
11 = VR T (14-22)

Where I E.I 3 .A logical choice for o, ; {(when the cross section is thin-walled)
is lhﬁe distribution predicted by the engineering theory of flexural shear stress
distribution described in Sec. 11~7;
1
01 = ;‘J(Fz) q = Fy (14-23)
where ¢ denotes the local thickness, and q is the flexural shear ﬂow due to F,.

Both expansions satisfy (a).

X,

- N I
rtvatytyitz=n

“\Cs
Py (y + dy)

—

e
oL — as,

g

-
_——ds
])

Hy)

~4

Fig. 14-8. Differential volume element.

In what follows, we consider the material to be linearly elastic. The comple-
mentary energy density is given by

3 1 1
V* = 5??11 + ‘2~E~ G'%I + *2“6(0'%2 + 6%3) (a)

where &7 is the initial extensional strain. Substituting (a) in (14-21) and taking
the stresses according to (14-22), (14-23) results in the following expression

+ This applies fmj a hqmogcneous beam. Composite beams are more covnvenienrly treated with
the appreach described in the next section.
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for V*:

7* = &9F, + kM + —I—FZ 1—-1«“ M + Loz gt F2 (14-24)
1 24E AER 2E]* 2GA%

where

o[-

1 "R
1 1 5
7¥—7<1*7§ Jy““)
1 W2
. — 221 4ds
Az L t (1 R)

If the section is symmetrical with respect to the Y3 axis, I* = [ and A} = 4,.

The deformation-force relations corresponding to this choice for V* are
o4 Fy M duy Uy

a=atIE T AERT U5 TR
F, du2 ul
L= L2 o 4-25
2% Gas a5 TR Y (14-25)

F, M do
k =k + —— e = e
+ AER T EI* dS

Note that the axial force and moment are coupled, due to the curvature.
Inverting (14-25) leads to expressions for the forces in terms of the deformations:

EA Er*

B o N N N M ¥
Fl‘“l_é(el ey) RA =5 )(I k®)
EI* EI*
—_ (ke — KO
M= i gD+ k=K (14-26)
F, = GA%e,

5;217;2 ARZ[ IRH J

We observe that
1 A% d ’
AR? (R) - 0<’1’€) (a)

where p is the radius of gyration and d is the depth of the cross section. For
example,
I d*

AR " R )
for a rectangular cross section. Then, & is of the order of (d/R?) and can be
neglected when (d/R)* « 1.

A curved member is said to be thin when 0(d/R) <« 1 and thick when 0(d/R)* «
1. We set 6 = 0 for a thick member. The thinness assumption is introduced
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by neglecting y,/R with respect to unity in the expression for the differential
arc length, ie., by taking
ds, ~ dS
= 14-27
Prax ] V* dA (14-29
A
Assuming a curved member to be thin is equivalent to using the expression
for V* developed for a prismatic member. The approximate form of (14-25)
for a thin member is

. B Fy duX Uy
P=A Tt TE = TR
F, du;,  uy
A R e R N 14-2
TG4, s TR (14-28)
M dw
k=K 4 2 294
CERTEIT S

To complete the treatment of the linear elastic case, we list the expanded
forms of the principle of virtual forces for thick and thin members. Note that
these expressions are based on a lincar variation in normal stress over the cross
section.

Thick Member

F, M
L{(el +ZE+ZER)AII + GA*AFZ

¥ M (14-29)

i L —— 1A 1S = Y d. AP,

+( +AER+M*)AM}<S Y. d; AP

Thin Member
F
0 4 “LIVAF —2
LKQ+AQA1 G&A&

(14-30)

+ (ko g) AM} S = Y d; AP,

14-4, FORCE-DISPLACEMENT RELATIONS—DISPLACEMENT
EXPANSION APPROACH; PRINCIPLE OF VIRTUAL
DISPLACEMENTS

In the variational procedure for establishing one-dimensional force-displace-
ment relations, it is not necessary to analyze the deformation, i.e., to determine
the strains at a point. One has only to introduce suitable expansions for the
stress components in terms of the one-dimensional force parameters. Now, we’
can also establish force-displacement relations by starting with expansions for
the displacement components in terms of one-dimensional displacement pa-
rameters and determining the corresponding strain distribution. We express the
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stresses in terms of the displacement parameters using the stress-strain relations,
and then substitute the stress expansions in the definition equations for Fy, F,,
and M. The effect of transverse shear deformation is usually neglected in this
approach. To determine the strain distribution, we must first analyze the
deformation at a point. This step is described in detail below.

Figure 14-9 shows the initial position of two orthogonal line elements, 0@,
and QQ,, at a point (y, v,. y3). The vectors defining these elements are

09, = 2’2‘1} = o, dy Z1
ay
— (Vz

00, = =~ ‘sz =dy, I,

¢

(-3

We use a prime superscript to denote quantities associated with the deformed
position of the member, which is shown in Fig. 14-10; for example:

(14-31)

fi

0z

=7

7
]
Iy
=
ra

I

#(y) = position vector to point P(y) in the deformed position (point P’).
tangent vector to the deformed centroidal axis.
position vector to Q(y, ¥,, ¥3) in the deformed position (point Q).

i

il

X
1973
(03]
ay,
Q O(z(ly
1o
RS by (y + dy)
+*
7\'.\)
P(y)
’\(\I /
5 <
AN 4
V4 Centroidal axis
N
)
-"Yl

Fig. 14-9. Initial geometry for orthogonal curvilinear line elements.

SEC. 14-4.
From Fig. 14-10, and noting (14-31):
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dA dy .
00, = %’fdy = (azfl + (f”) dy (14-32)
7Y - 0Oil,
0y = =dy, = |t, + = |dy
00, v, V2 <2 Yz) V2

The analysis of strain consists of determining the extensions and change in
angle between the line elements. We denote the extensional strains by 8
(J = L, 2) and the shearing strain by y,,. The general expressions are

’ i 1 Jj=12

~jao) )
sinyy, = 22100 (14-33)
2~ ooioo)

Now, we restrict this discussion to small strain. Substituting for the deformed
vectors and neglecting strains with respect to unity, (14-33) expands to

1 - (’)‘1/‘2 1 6172 (’,—)az
g X —If o 4 = S E oy
oy ay 2Ao,)” € oy
. Oy, 1 oh, o,
I P i e (14-34) -
¢y, 238y, (v,
- Qi 1. ¢y | ¢, Ciy
P12 Rly s o= oty r b R
Y, oy Ay oy Oy @y,

The nonlinear terms are associated with the rotation of the tangent vector.
Neglecting these terms corresponds to neglecting the difference between the
deformed and undeformed geometry, i.c. to assuming linear geometry.
The next step involves introducing an expansion for i, in terms of y,. We
express il, as a linear function of y,.
iy, = il — wy,t, (14-35)
where w = w(y) and

=l + uyl, = i(y) (14-36)
is the displacement vector for a point on the centroidal axis. Equation (14—35)
implies that a normal cross section remains a plane after deformation. One can
mterpret w as the rotation of the cross section in the direction from 7, toward
t,. This notation is illustrated in Fig. 14—11.

Inwhat follows, we consider only linear geometry. Substituting for ii,, taking
y =S, and evaluating the derivatives lead to the following strain expansions:
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1 dug Uy
=—— -y ) = — — = 81|y, =
& = 1~ y,/R (e y2k) €y s R 1 l‘) 0
duy | Uy o B
&y = €y = d,S + "li‘ — ) = *’)IZIYz:O (]4 37)
1 ] dw
LS __— K= ——
12 =TT, R @ ds

The vanishing of ¢, is due to our choice for ii,. One could include an dddl—
tional linear term, By,f,. This would give &; = B and additional terms in the

X3

Xy

Fig. 14-10. Deformed geometry for orthogonal curvilinear line elements.

sty
(U —wy2)t
0

Centroidal axis

Fig. 14-11. Displacement expansion.
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expressions for ¢; and y,,. Note that the assumption that a normal cross
section remains plane does not lead to a linear variation in extensional strain
over the depth when the member is curved.

We introduce the assumption of negligible transverse deformation by setting
e, = 0. The resulting expressions for o and k in terms of u; and u, are

62 = 0
Y
. dul 4 ul
~dS R (14-38)

_do dzuzqt d (u
T ds 4S8t T ds\R

When transverse shear deformation is neglected, one must determine F, using
the moment-equilibrium equation.

The next step involves expressing F,, F,, and M in terms of the one-dimen-
sional deformation parameters e,e, and k. In what follows, we consider the
material to be linearly elastic and take the stress-strain relations for o4, 0,
as:t

o1 = Elg; — ¢9) 012 = Gyyy S
Substituting for ¢y, yy,, using (14-37},
E
6y = ——(e; — y,k) — Eé&]
Yok 1 (14-39)
G

012 = 1—*:‘)727;{' €

and then evaluating F, I,, and M, we obtain

dA . V2 dA
Ee, — e 0
¢ _Ul -—yz/R Ek le —yz/R LJfﬁl dA
F, = e -
5 JJI TR (14-40)

vy dA
M= — —— + Ek v,e% dA
ﬂ 1 — /R J 1~ J’z/R ﬂ 2

The various integrals can be expressed in terms of only one integral by using
the identity

£y

i

1 y2/R
1 — )/271{ =1 1~ y,/R (@)
and noting that Y; is a centroidal axis:
”)’z dA =0 . (b)

+ The relation for ¢, is exact only when ¢,; = o33 = 0. We generally neglect 0,,, 633 for a
member.
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One can easily show that

I!
i

)
PR a4y

e_0+,&_+.w]!/[_
L= 4 T T EAR
“ = G,
F M
ko= k0 4 i
+LAR+EI”

where

rerffie )
v
(k]
o4 (i~ 2)o
- :[_} J J £ <yl _ ALR> dA

The expressions for e are identical with the result (see (14-25)) obtained with
the variational approach. However, the result for k differs in the coefficient
for M. This difference (I’ or I") is due to the nonlinear expansion used for 0.

x
o
|

(14-42)

=
(=3

Example 14-1

We determine I’ for the rectangular cross section shown in Fig, E14-1.

. [ A, f W yidy
J1=v /R Joanl = yy/R

a
T+ d “
2R
= —~R*d + R%*In —
R
2R/
To obtain a more tractable form, we expand the log terms, using
1+ x X X7
1 —_ =2 C J— o — e e b
n(.l—x) (”+3+5+7 ®)

- g

S
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This series converges for [x| < 1. Then
Ceogl
d 3 2 4
I~—Zi 5\2R 7\2R

and
) 3/dV 3 /d\¢
=1 1_;..._.(,_, —
{ 20 R> +112<R> * } @

.{ Fig. E14—1

Y;

The relations listed above involve

is thick, we neglect (y2/R)? with respe
by taking

cxact integrals. Now, when the member
ct to unity. This assumption is introduced

L4 vz
"y R <?€> tomle R (@)

in the expansions for 011,01, and I';

fé_lzel<l+%2~>»k<}2+}}}:> &
KEERN (1 + 2 )
G
- f f 2 (14-43)
1 - yz/R ff< > ‘
= I{I + ﬁffyg dA}




442 PLANAR DEFORMATION OF A PLANAR MEMBER CHAP. 14

To be consistent, we must also neglect I'/AR? with respect to unity in ‘ghe
expression for A, and [”. When the member is thin, we neglect y,/R with

respect to unity.
1

S |
1 — y/R
i ey — pok — & (14-44)
E
012
G ~ €,

It is of interest to establish the one-dimensional form of the principle of virtual
displacements corresponding to the linear displacement expansion used iq this
development. The general three-dimensional form for an orthogonal coordinate
system is (see Sec. 10-6):

f”(au dey + 0+ 01,07, + -+ Yd(vol) = Y.P; A4, (a)

where P; represents an external force quantity and d; is the displacement quantity
corresponding to P;. We consider only &; and y,, to be finitc, and express the
differential volume in terms of the cross-sectional coordinates y,, y3 and arc
length along the centroidal axes (see Fig. 14-9): :

d(vol) = dS, dy, dvs = (1 - ‘RZ> ds dy, dys (b)

Then (a) reduces to

j {Jj (0'11 581 -+ 012 5'))12) (1 - :‘1%2_.) dA} ds = ZP, Ad! (14‘45)
S
A

We take (14-45) as the form of the principle of virtual displacements for planar

deformation. . .
The strains corresponding to a linear expansion for displacements and linear

geometry are defined by (14-37), which are listed below for convenience:

1

g = ———={e; — ¥2k)

- 1)’2/R ©

Yiz2 &= m €

duy Uy
e =—5 — =

ds R
e, = duz + ud RN (d)
2748 R

do
k=1

Substituting for &,, 7;, and using the definition equations for Fy, F,, and M,
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we obtain
jS[F1 dey + F, de, + M 5k]dS = ZP,- Ad; (14-46)

This result depends only on the strain expansions, i.e., (c). One can apply it
for the geometrically nonlinear case, provided that (¢) are taken as defining
the strain distribution over the cross section. ”

We use the principle of virtual displacements to establish consistent force-
equilibrium equations. One starts with one-dimensional deformation-displace-
ment relations, substitutes in (14-46), and integrates the left-hand side by parts.
Equating coefficients of the displacement parameters leads to a set of force
equilibrium equations and boundary conditions that are consistent with the geo-
metrical assumptions introduced in establishing the deformation-displacement
relations. The following example illustrates this application.

Example 14-2

The assumption of negligible transverse shear deformation is introduced by setting e,
equal to zero. This leads to an expression for the rotation, w, in terms of the translation
components,
duy, wy

“i TR @)
and the relations for negligible transverse shear deformation reduce to
{s[F. ey + M Sk1dS = Y P; Ad, (b)
o = du;  us
YTAS R )
’ do d [du, u te
“=us Tas\as YR
Substituting for Aw and the strain variations,
Auy d
Aw = —— 4+ —=
R + 7S Au,
d 1
581 = ;{—S Au1 - —R‘ All;_ (d)
d? 1
ok ZiTS‘—Z Auz + "f{';ig AHl
and integrating by parts, the left- and right-hand sides of (b) cxpand to
Sy
0P ooy + M okJas
M aM d
= l(Fl “f' ‘k—> Aul - "('II—S' Auz -+ M ‘%Auzs':SB (e)
M aM d
- }(Fl + E) Au1 - —d:g' Allz + M ZITS‘ Allz ses.

S5 dF, 1dM F, &M
~~~~~ Sl IS I Il | )
* L,, {A“I[ s R dSJ * ”2[ R T s
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Sp m dm
zPi Ad, = LA {AL{] (bl + '1—2'> + Auz (bz — :{5)} as

- M - _
+ (F31 + J) Augy, + | Fpy + mB> Aug, + MBA — (f)
R ds /p

- M . _ du
+ (FAI + *}‘zﬁ> Augy + <FA2 - ”1A> Aug; + My A (217572)‘4

The consistent equilibrium equations and boundary conditions for negligible transverse
shear deformation follow by equating corresponding coefficients of the displacement
variations in (e) and (f):

CHAP. 14

and

§,<8S<§,
dF, 1 dM m
S 2T -
s TR Thtg=0
F, &M dm
Sk =0
R asE T T s
§=3S,
u prescribed or  Fy = —F 4,
dM
u,  prescribed or 5= Fago—m (g)
1 _
a2 prescribed or M= —M,
ds
S=378,
i prescribed or  Fy = Fp,
iM ~
Uy prescribed or 5&3; = —Fp, —m
dllz . . _
' prescribed or M = My

One can obtain (g) by solving the last equation in (14~14) for F, and substituting in the
first two equations. :
Suppose we neglect u4/R in the expression for w:

(h)

This assumptiont is generally referred to as Mushtari’s approximation. The equilibrium
equations for the tangential direction reduce to

dF‘ .
T by (1)

T See Ref. 5.
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The other equilibrium equation and the boundary conditions are not changed. Using
(h) instead of (a) eliminates the shear term, F,/R, in the tangential force-equilibrium
equation. i

14-5. CARTESIAN FORMULATION

We consider the case where the equation defining the centroidal axis has the
form x, = f(x{). The geometrical relations for this parametric representation
are obtained by taking y = x; in (14-7). They are summarized belowt for
convenience and the notation is shown in Fig. 14-12:

dS = DﬁdX]
df
tan 6 = (—i—;:

(]f 271142 1
“”[”(a‘;;)] = cos b
.1l df \ . 1 di
= oc{ * (a;q) J " ade
.1 ar\. . (14-47)
e 5['<33<1> nT ]

In the previous formulation, we worked with displacement components and
external force components referred to the local frame. An alternate approach,
originally suggested by Marguerre,I involves working with components re-
ferred to the basic frame rather than the local frame. The resulting expressions
differ, and it is therefore of interest to describe this approach in detail. We
start with the determination of the force-equilibrium equations.

Consider the differential element shown in Fig. 14~13. The vector.equilibrium
equations are

dF, | . =
o, TP
i ; aXy (14-48)
+ r - P
—————— S h =
v, tag < Feth=0

t See Prob. 14—1.
1 See Ref. 6.
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Xy

446
X3
Y,
Yy
[
I
| ’ .
/‘ a’ée —d’ﬁdrl
= 4; ldx -
R x3 = f(xy) : o 1
ig |
i
Fig. 14-12. Notation for Cartesian formulation.
X3
pdxt p | dlydy
d}q 2
3 dI-;_ _dxg
F- dx‘< 2 )+
hdﬁ\ PR
-

= i dxg
M.+ dX] ( 2

7

=, dr dx

. r+dx1 3 +
2 dxy

Fig. 14-13. Differential element for equilibrium analysis.

CHAP. 14

|
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where p, h are the external applied force and moment vectors per unit projected
length, i.e., per unit x;. They are related to b and 7 (see Fig. 14—4) by

pdx, = bdS = (ab)dx,

= . . (14-49)
hdx, = mdS = (em)dx,
Substituting for the force and moment vectors,
;ﬁ+ = Flfl + inz = N171 -+ N272
M, = Mi, h = hi,
P =piiy + paly (14-50)
N, =F;cos@ — F,sinf '
Ny =F,;sinf + F,cos 8
the equilibrium equations expand to
dN d
L= (F cos§ — F,sin6) = —p,
dx,  dx,
dN {
2 o (Fsin@ + Fycos0) = —p, (14-51)
dx,  dx; .
.31<1A-4- + h) =F, = —N,sinf + N, cos §
B dxl

We restrict this treatment to an elastic material and establish the force-
displacement relations, using the principle of virtual forces,

fxl o dV* dx1 = j-‘(l [91 AFl -+ [ AFZ + k AA/{]O( d}q = zdl APl (a)

where V* = V* (F,, F, M) is the complementary energy per unit arc length.
Consider the differential element shown in Fig. 14~14. The virtual-force sys-
tem is statically permissible, ie., it satisfies the force-equilibrium equations
identically:

AT =0
P (b)
ZZAM +oaty X AF, =0
Expanding ) d; AP,
- dii . _ —  do
ZdiAPiz[AF*'.(E;;_FO”’}xw>+AM+'—d_5cjjldxl (C)
and then substituting for the displacement and rotation vectors,
U = viiy + Ui, '(14~52)

w = wiy = i,
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we obtain

dUl dUz ; .(viili d d
ZdiAPiz(ANla'x'l‘JrANz"g;l—&AFz(v+Ade1 X4 (d)
Finally, substituting for N, N, in terms of F, F, and equating cocflicients of
the force increments result in

ov* 5 A0 . E{U_z
e, = oF, = COS 03—; + sin @ cos 9dx1
517* . dvl 2 dUZ
= = — —= 4+ cos* f— — 14-53
¢ = op = sm@cos@dxl + cos del o ( )
oV dow
= —— = ——C0S 0
cM dx;

The member is said to be shallow when 6? « 1. One introduces this assump-
tion by setting :

: d
cosf | sinf o tan0 = - (14-54)
dx;

in (14-50), which relate the cartesian and local forces.

-~

£
-~ o d y | -~
TROO e D
/ }
o dw ‘1’2)(\ - o :
dx‘ 2 l
l |
l I
i dxl i Xl

Fig. 14—14. Virtual force system.

Marguerre’s equations are obtained by assuming the member is shallow
and, in addition, neglecting the contribution of F, in the expression for N;.
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Marguerre starts with
NI ~ Fl (a)
daf
N, = —_—
2 x Fy+ <dx1) Fy
and the resulting equations are
1F
o1 +p =0
Xm
dFr, d df
—t it — | F ==+ pp=0
dx, * dx, ( Ydx, P2
dM
F2 = —_—— M
dx (14-55)

TR, Tdx, T dx, dv,
av*  dv,

2T, T i ©

o 7 do
oM dx,

One step remains, namely, to establish the boundary conditions. The generél
conditions are
vy or N,
v, or N, ¢ prescribed at each end (14-56)
M or w
We obtain the appropriate boundary conditions for the various cases considered

above by substituting for N, N, and w. For example, the boundary conditions
for the Marguerre formulation are

vy or F,
) df :
U, or F, + o F, ¢ prescribed at cach end (14-57)
V1
w or M )

14-6. DISPLACEMENT METHOD OF SOLUTION—CIRCULAR MEMBER

The displacement method involves solving the system of governing dif-
ferential equations which, for the planar case, consist of three force-equilibrium
equations and three force-displacement equations. If the applied loads are
independent of the displacements, we can first solve the force equilibrium
equations and then integrate the force-displacement relations. This method
is quite straightforward for the prismatic case since stretching and flexure are
uncoupled. However, it is usually quite difficult to apply when the member is
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curved {except when it is circular) or the cross section varies. In what follows,
we illustrate the application of the displacement method to a circular member
having a constant cross section, starting with—

1. the exact equations (based on stress expansions) for a thick member
2. Marguerre’s equations for a thin member

The results obtained for this simple geometry provide us with some insight as to
the relative importance of transverse shear deformation and stretching deforma-
tion versus bending deformation.

When the centroidal axis is a circular segment, R = const, and the equations
simplify somewhat. It is convenient to take the polar angle 0 as the independent
variable in this case. We list the governing equations below for convenience
and summarize the notation in Fig. 14-15:

dF, dM ) m
el R o
Rgo +ap =% <"‘ * R)
d*M ] 5 dm
Eq. (14-19) = 4= ~ RF, = R%, - R (14-58)
1 dM
I J
e = po n {:—1 4 M _ 1 dul
VO YE T AER T R\do T "
F, 1 [du,
Eq. (14-25) = {e, = GE =x\7 +Uu |- (14-59)
F M 1 dw
I = k° ST e
CCOYIERTEF TR @

Solution of the Force-Equilibrium Equations

We consider the external forces to be independent of the displacements.
Integrating the first equilibrium equation, we have

RF, = —M — R? j <b, + %) do + C, (a)
g

where C is an integration constant. Substituting for F; in the second equation
results in a second-order differential equation for M:

M 1 dm
W+M=CI+R2{b2-§g’g—ﬁ<bl+%>d9} )

The general solution of (b) is

M=C;+ Cycos8 + C; sin_@ + M, {14-60)

e e e . e e e e ASESLEHS.
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where M, denotes the particular solution due to the external distributed loading
and C,, C; are constants. Once M is known, we find F; using (a) and F, from
the moment equilibrium equation. The resulting expressions are

F, :%(Czcost‘)-i— Cysinf + M,) — Rj(b1 %—%)d@
# (14-61)

1 . aM,
F, = ?(—Cz sinf + C;cos 6 + 75») —-m

dS =Rdf

Fig. 14-15. Notation for circular member.

Integration of the Force-Displacement Relations

We start with (14-59) written in a slightly rearranged form:

dul 0 1 3
1 = — RF

R Re? + iF (M + RFy)

du RF

d?)z +ouy = @é + Ro (a)
dw R I
— = RK® + —| M + ~~—(RF
i =Rt [1 TR ‘)]

To determine u, and u,, wé transform the first two equations to

] 1
A, + R+ <M + RF))

14-62
7 ( )
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and ,
I/I:GI/{@% R%—Re?—z%(M—I—RFI)
= E%%Z- + R — R + %ﬁ~ M (14-63)

I* d\?
o=~ (%)

alzl—-(se

We have previously shownt that §, is of the order of (d/R)%. It is reasonable
to neglect §, with respect to 1 but we will retain it in order to keep track of the
influence of extensional deformation. We solve (14-63) for u,, determine u,
from (14-62), and w from the second equation in (a),

E, 1 [du,
S ST ke 64
© Toas TR ((m * “1> (14-64)

This leads to three additional intcgration constants. The six constants are
determined by enforcing the three boundary conditions at cach end. Various
loading conditions are treated in the following examples.

Example 14-3
Consider a member (Fig. 14-3) fixed at the negative end (A) and subjected only
to Fg, at the right end (B). The boundary conditions for this case are
1:1=1—:81; }:2:1\’:{:0 at0=03
Uy =uy =w=20 atf =0

(a)

Specializing the force solution for no external distributed loading and enforcing the
boundary conditions at B, we obtain
Fy = Fyq cos(@s — 0)
F, = Fp; sin(0y — 0) (b)
M = RFg(l ~ cos (0g ~ 0))

i

To sifnplify the analysis, we suppose there is no initial deformation. Using (b), i takes
the form

FyR?

V=

EI* dy?
o= i &) @

02=al+5s=1.—5@+5-"

[a: — a5 cos(fs — )] ©

where

A

t See Sec. 14-3, Eq. (14-26).
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N()te thal 55 18 aSSOCiated Wlth trar / On 10stitu (8] 4—6
i 1sverse shear d{' ormation. i i i
A . f g bk 1 tmg f r l// m (1 3)

_ ) FpR3? ¢
Uy = C4co80 + Cysin @ + %;— [al + %2—6 sin{fl; — 9)] (e)

The solution for u; follows from (14-62):

Uy = Cysinf — Cscos 0 + Cs
FpR3? a
e {0 + ~-2% [6 cos(6; — ) + sin(@, — 9)]} ()

Next, we determine o using (14-64),

® = Cs | IR i .
=Rt (0 + aysin0, - o) ©

Finally, the constants rci i
e are found by enforcing the displacement boundary conditions

3 Fp R3
T
a FpR?
Co =22 DBV
s (2 a1> e Sin Op ‘ ¢h)
_ FyR®
Cﬁ = —d; ’—E~]**—- sin 03

de;l"o d<’:t<.arm1ne the relative im portance of stretching and shear deformation versus bending
ormation, we evaluate the displacements at § = 0y and write the resulting expreesiox;s>

Fig. E14-3

Constant cross section
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in the following form:

Fg R? )
wg = %1-1;7 (85 — sin Op)(1 + by 8.
o 3 ) ,
Upy = ngf; (205 — 2sin dg 4 } sin 0y cos Op)(1 + by S, + by Js)
FaR? e .
Upy = - E* (1 — cos 8 — ¥sin® Og)(1 ~ Se 4 bady)
__Sinfs (i)
LT 0y — sin O
. ~1 0, + 25sin 8y — sin O cos Oy
b, = 3G, — 25in 0y + $sinfpcos by
4(0p — sinBpcos Op)
by = 30, " 2sin O + 4+ sin O cos O
1sin? Oy . L+ costg
ba = 1 = cos Oy — rsin*fy 1 —cosOp )

., by) are of order unity or less when 65 is not small with respect
’ S N - 2

to unity, i.e., when the segment is not shallow. Also, 3, and d, are of order (d/R)*. Tt fzoﬂows

that the displacements due to stretching and shear deformation are of order (d/R)* times

the displacement due to bending deformation for a nonshallow mem‘.bcr.‘ .
To investigate the shallow case, we replace the trigometric terms 1n (i) by their Taylor

series expansions, pae
sm0=0(1 — (T+12()~ )

02 04
o e e
L 0

2 2
sin@cosO:G(l ~—592 +.1,§94_.H>

2 2
sin29=92<1_?~+wg4,...>

The coefficients (by, . -

3 45

and neglect 93 with respect to unity. The resulting expressions are

Fp S? 1 I*
vs = {GB [‘é + 7@]}

FauS* foal L I,J_L*W Rl ()
sy = T 05150 ¥ 3Gais2| " as?
FuS* f0p[1 EI*
U = ER )2 |4 GATS
Now,
I* d\?
= 0 §
A5 ]

EI* 0<d>2
GAzS?  \S
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I* 1 [d\?
PTAT <§>
EI* . E (d\* d\?
ca = oals) =05 (5)
for a rectangular section and v = 0.3. Since (d/S)? « I for a member, we can neglect the
transverse shear terms in uy,, iy, and the stretching term in wyz. However, we must retain

the stretching term in ug, since it is of the same order as the bending term. The appropriate
expression for up, is

For example,

(m)

FpS? (03 I*
o1 = (53 ¥ zs,“) )

In sum, we have shown that the percentage of error due to neglecting stretching and
transverse shear deformation is of the order of (d/R)? for a nonshallow circular member.
If the member is shallow (6 < = 157%), we cannot neglect stretching deformation. Actually,
the stretching term dominates when the member is quite shallow. The error due to ne-
glecting transverse shear deformation for the shallow case is still only of the order of
(d/R).

Example 144

The internal force distributions due to Fj, acting on the cantilever member shown
in Fig. E14~4 are given by

f

Fy —Fpy sin(@g — 0)
Fy = Fy; cos(0 — 0) (@)
M = Fg, Rsin(0 — 0)

it

We suppose the member is not shallow and neglect stretching and shear deformation.
The force-displacement relations reduce to (we set 4 = A¥ = oo in (14-59))

duy

i Ref

du,

‘d*é + u; = Rw (b)
dw RM
= REO
- N TR

Eliminating u, from the first two equations, we obtain

dzu2 Rr2
P + uy = R¥® — Red + EI—*M
du
__9_1 = Uy + Re‘l) ©

‘ 1 [du, " j
= (2,
TR\ ")

We determine u,, then uy, and finally . Note that (c) corresponds to (14-62), (14-63)
and(14-64) with 4 = A, = oco. The final expressions (for no initial deformation or support
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movement) are

FpR?

Uy = %{ {(6 cos(y — 0) — sin 8 cos O}

= {—2cos 05 + cos g cos  — O sin(fy — 0) + cos(0z — )} (d)
FyR?

w = ZZI* { cos(@z — 8) — cos 5}

Example 14-5

We analyze the shallow parabolic member shown in Fig. E14-5 using Marguerre’s
equations. We consider the member to be thin and neglect transverse shear deformation.
Taking f = ax?/2 and p, = m = 0, the governing equations (see (14—55) and (14-57))
reduce to ‘

dF,
dx; B
d*M .
—Z\’%—-—ah——pz=0 (a)
g M
dx
Fy  dyy du,
= 4 = X e
1= et AE  dxy Fan dx;
dv,
= ®)
dxy
M d*,
/ = ]{0 —_— I e
‘ YET I
vy, Uy,  prescribed at x; = 0
Ny =F, = Ny
M i (©
Ny = ——— 4+ ax;Fy =0pyatx; = L
dX1
M =0
Integrating (a) and using the boundary conditions at x; = L, we obtain
‘Fl = Nln
N
M= B - - SR - ) @

Fy = po(L — x3) — axNpy

We suppose ¢? = k° = 0 to simplify the discussion. Integrating the moment-curvature
relation,
d*v, P2
El—F =M = —=(L ~ x,)* —
dx? 2 ( )

WNot 2 ©

Fig. E14-4

1,4 const

Fig. E14-5 .

0=2h
L2
(/)21

P2 = const



458 PLANAR DEFORMATION OF A PLANAR MEMBER CHAP. 14
and noting that v, = dv/dx; = 0 at x, = 0 lead to the solution for v,
N { .
pa (1 Loy b a) _Vsfran "o )
EI!)Z —“———2'—(5112)(% —-?xl “+ 12.‘C\ 2 L X1 6X1

The axial displacement is determined by integrating the extensional strain displacement
relation,

dvy  Fy dv,
P ] —_ —_— axl e
dx, AE dx,
U (8

2 1
apy (1,5 Lo 4 1 voolS 4 <L2x3 - ~x5>]
vy = — 2~E~1(—3‘L X1 — ZLXL -+ 1§.\1 “+ IVBI AE G6EI 1 5 1

We express the last term in (g) as

ii%{‘*(?)(’f)[@ S\ T
= 2h/L? O

fl_zjii (ﬁ) = %(hy D)
6 I 3\p

and we see that this term dominates when h is larger with respect to the cross-sectional
depth.

Now,

Then

14-7. FORCE METHOD OF SOLUTION

Our starting point is the principle of virtual forces restricted to planar

deformation, )
[sley AF + &3 AF, + k AM)dS — Z?lk AR, = d; AP; (14-65)

where the virtual-force system is statically permissible, dy represeqts a support
movement, and AR, is the corresponding reaction increment. The rele}tlons
between the deformation measures (g, €, k) and the internal forces (Fy, Fa, M )
depend on the material properties and on .whether one employs stress <')r d]si
placement expansions. This discussion is limited to a linearly el‘astxc materia
but one should note that (14-65) is valid for arbitrary material. qu con-
venience, we list the force-deformation relations below. The notation for

internal force quantities is shown in Fig. 14-3.

Arbitrary Linearly Elastic Member

o M
e =t JF T EAR
_ b (14-66)
© = G4,
_ M
k=% + —2 —

i
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where 29, k°, 4,, and T are defined by (14~24) for the stress-expansion approach
and (14-42) for the displacement-expansion approach.

Thin Linearly Elastic Member

F
= O —_—1—.
o=t
F,
2y = = 14-67
€2 GA, ( )
M
k=K 4 %
I

where A,, e?, k® are the same as for a prismatic member.

When the member is not shallow, it is reasonable to neglect stretching and
transverse shear deformation. As shown in Example 14-3, this approximation
introduces a percentage error of 0(d/R)%. Formally, one sets A = 4, = co.
If the member is shallow, we can still neglect transverse shear deformation
but we must include stretching deformation.

The basic steps involved in applying the force method to a curved member
are the same as for the prismatic case. However, the algebra is usually more
complicated, due to the geometry. We will discuss first the determination of
the displacement at a point. '

To determine the displacement at Q in the direction defined by 1, we apply
an external virtual force, APgyl,, generatc a statically determinate system of
internal forces and reactions corresponding to AP,

AF; = F; o APy (j=1,2)
AM = M o AP, (14-68)
AR, = Ry o AP,

and substitute in (14-65):
do = [s(erFy o + €F; ¢ + kM o)dS — YRy (o dy (14-69)

This expression is valid for an arbitrary material. We set e, = 0 if transverse
shear deformation is negligible and e; = ¢} if stretching deformation is
negligible.

Example 14-6

We consider the thin linearly elastic circular segment shown in Fig. E14-6A. We
suppose the member is not shallow and neglect stretching and transverse shear deformation.
The reactions are the end forces at A for this example, and (14-69) expands to

M
dQ = j‘ (e(l)Fl,Q + (ko + Ej) IW,Q> das + ﬁAlFALQ + HAZFAZ.Q + &-)AMA,Q (a)
S

In what follows, we illustrate the application of (a)
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Fig. E14—6A

)

v

Expressions for Displacements at B
To determine ug,, we take APy = AFp,. The internal virtual-force system corresponds
to Fp; = +1. It is convenient to work with # = 05 — @ as the independent variable
rather than 6.
The force-influence coefficients (Fy ¢, F2, 9, M o) follow directly from Fig. E14-6B:
Fio= FJIAPQ =+1 = F1|F51=+1 = Cos i1
Fj g =sing (b)
M o = R(1 — cos¥)

Substituting (b) in (a) results in the following general expression for uy, :

08

M
ug, = R J {e‘l’ cosy + R (ko + Ef)(l — cos n)dy
0
+17, c0S Op + Ty sin O + @4 R(1 — cos Op)

©

Once the loading is specified, we can evaluate the integral. Terms involving the support

displacements define the rigid body displacement at B.
Taking APy = AFp,;, AMp leads to expression for ug, and wp. We list them below

for future reference:

O N M
Ug, = RJ {——e?sinnJrR(ko+EI—)sinﬂ}dl1 ~ T4y Sinfg+Tyycoslp+ @, Rsinby (d)
(V] "

7] M
g = (I)A -+ RJ;) <ko + :E—I*> d}’{

Solution for a Concentrated Loading at an Arbitrary Interior Point

We consider an arbitrary force vector, P, and moment, M, applied at point C as shown
in Fig. E14-6C.

I

SEC. 14-7. FORCE METHOD OF SOLUTION 461

Fig. E14-6B

Fpa,upy

Fig. E14-86C
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I;C= Pcify + Pesty
- ©]
Mce = Mt

The expressions for the displacements at B due to an external loading are obtained by
specializing (c) and (d) for no initial deformation or support movement and noting that

M=0 n<fc )
M = RP¢i[1 — cos(n — nc)] + RPessin{y — ne) + Me 1 > ic

The solution for constant I is

—PClR3 . . . 0(_‘ [ .
Ugy = T Oc — sin Oc — sin @ + sinye + 5 Cos e + 3 sin 8¢ cos Oy

P, R?
El

0 1 .
+ (1 — cos O¢ + —2£ sin ye — 3 sin B¢ sin DB>

McR? . .
+ == (0 + sin ¢ — sin b)

El
PcR? 1 . 1. .
Up, = _EELI- (——cos 0p + cosne — 5 Oc sin ye — 5 sin @ sin 03) ()
PR3 (1 1
+ 5“3_52}— (~2- 0 cos e — 3 sin 8¢ cos 0,;)

R*M
+ —E—C (cos ¢ — cos Op)

R2P R2P RM
=L (0 — sinbc) + ~EIE£(1 — €08 0c) + —==0c

@ = TET £l

If we take point C to coincide with B, 5o = 0 and 0¢ = 8,. The resulting equations
relate the displacement at B due to forces applied at B in the directions of the local frame
at B and can_be interpreted as member force-deformation relations. It is convenient to
express these relations in matrix form:

Uy = 13F s (b
R*[1 - cos 0g R[05 — sin@z] | (Fp,
— $sin? 0]

gy R2[30; — 2 sin 0,
+ 4sin g cos 0]

~1

RZ
Symmetrical 5 [65 — sin 05 cos O5) R[1 — cos 65] 82

R
Upyp = EI

03 MII

We call f; the member flexibility matrix.

We describe next the application of the principle of virtual forces in the
analysis of a statically indeterminate planar member. Let the member be in-
determinate to the rth degree and let Z,, . . ., Z, represent the force redundants.
Using the equilibrium equations, we express the internal forces and reactions in
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terms of the applied loads and the force redundants:

Fy=Fio+ ) Fi.Z,
k=1
Fo=Foo+ ) Fou2Z,
o (14-70)
M=M,+ Y M,z
k=1

Ri=R;,+ Z Ri v Zy
. k=
Substjtgting the virtual l'_o.rce system corresponding to AZ; (which is statiéallv
permissible and sel-f-gguihbrating) in (14-65) and letting / range from 1 to ’
lead to the compatibility equations relating the actual deformations:
Jhs(ellrl_j + 621:2!J' -+ /&Myj)dS — Z Z,R,'J = O ( )
7 a
J=1...r

: When the material is lincarly clastic, the compatibility equations take the
orm

72—;1 fijk = Af G=1... i1 (14-71)
where
fi=tfu=| (52 F I
w =y = . Zél“x,ijk + EAR (Fi ;M + FyaM )
1 1
+ '&T;PZ'jFZ"‘ -+ ETMJA/],‘) ds
B _ |
A; = Zi:fliRi’j — L(Fl’je? + MJEO + ZEFLJ'FLO

1
T EAR T Moo + Fi oM ) + 6%2 FaoFs ;i + }%M.OM,J') s

Weset] = I, 4, = A,, and 1/AR = 0 for a thin member.

) Note that f}, is the displacement of the primary structure in the direction of
Z; dpe tp a unit value of Z,. Also, A; is the actual displacement of the point of
apphcatmn of Z; minus the displacement of the primary structure in the direc-
tion of Z; due to support movement, initial deformation, and the prescribed
external forces.

Example 14-7

Consider the symmetrical closed ring shown in Fig. E14-7. From symmetry

P
2 atf =0 (a)
F, =90
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We take the moment at § = 0 as the force redundant. To simplify the algebra,.w‘eAsuppose
the member is thin and neglect stretching and shear deformation. The compatibility equa-

tions reduces to
fuzx = Ay

L b
. — M?* dS (b)
S £E1 !

Il

{
A = — {EM, oM. dS

Js

Note that f;; is the relative rotation ()¢) due to a unit value of Z; and A, ishthe rclat.we
rotation (¢) due to the applied load. Equation (b) states that the net relative rotation

must vanish.

Fig. E14-7

B —_—— P

Now,
1\/['1 = 1\/1'11—;1 = +1

RIS

M‘ozgm—me) 0<0<

We consider 7 to be constant. Then, (b) reduces to

By
L

w2
MM LS ;L (1 — cos 6)d9 (.“i’i)
LT M dS ,mj2
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Because of symmetry, we need to integrate over only a quarter of the ring. Finally, the
total moment is

1 cos6
M=Mqy+ ZM, :PR(——?EL) ©
T 2
The axial and shear force variations are given by
P
F; = —cos0
2 f
P ]
Fy = ~—sinf
2

When the equation defining the centroidal axis is expressed in the form
x; = f(x,), it is more convenient to work with force and displacement quan-
tities referred to the basic frame rather than to the local frame, i.e., to use the
cartesian formulation developed in Sec. (14-5). The cartesian notation is sum-
marized in Fig. 14-16.

X,
No, v
M, w
V\ f
- IVI, vy
Positive face
-
iz

= Xy
iy

Fig. 14—-16. Notation for Cartesian formuiation.

The geometrical quantities and relations between the internal force com-
ponents are

tan 6 = LA = f
dx,
dx
ds = —L
cos 8

14-72
F, = Nycos@ + N,sinf ( )

—~N,;sinf + N, cosf

ry
NN
I
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We first find Ny, N, and then determine Fy, F,. To obtain the equations for
the cartesian case, we just have to replace dS by dx,/cos 0 in the general ex-
pressions {(14-69) and (14-71)). In what follows, we suppose the member is
thin and linearly elastic.

When the member is not shallow, we can neglect the stretching and transverse
shear deformation terms. The equations for this case reduce to:

Displacement at Point Q)

- M (le .
dy = L <e?I«I,Q + (ko + E) M. Q) ey i ;RLQR{ (14-73)
Compatibility Equations
S hui =
%
1 dx
bR —_— Mo, -
I .L‘(Elﬁd” ‘k>0036 (14-74)

M dx
Aj= ;Ri.jai - L [é’?ﬂ,j + <k° + Tf) M. j:} 56_515

We can express the terms involving F (, in terms of Ny (, and N, , since

Fi=cosON, +sin0N,,, (a)
Then,
dx
j [€iF; 3] E(")gla = J AN, () + /Ny Jdxy (14-75)

One must generally resort to numerical integration in order to evaluate the
integrals, due to the presence of the term 1/cos 6.
. When the member is shallow, 0% « 1, and we can approximate (14-72) with
cosf) ~ 1
sinf ~ tan 0 = f’
ds ~ dx, _
Fy~ Ny +f'N,
Fy~ —f'N .+ N,

(14-76)

We cannot neglect the stretching deformation term in this case. However, it is
reasonable to take F; &~ N,;. We also introduced this assumption in the devel-
opment of Marguerre’s equations. The equations for the shallow case with
negligible transverse shear deformation and F,; ~ N, have the forms listed
below:

Displacement at Point

N M .
o J [(e? ' XE1>N"Q " (ko +EF> M,Q] dx; = Y Ry od; (14-77)
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Compatibility Equation
;j;ikzk = Aj

, 1 1
f Jie = J; [A_E Ny Ny, + EM’jM‘k] dx, (14-78)

N M
Aj = ;Ri,jai - Jxl [(@? + ”;4113:—0> Nl.j + (}(O + —E"I‘C') M,,] dxl

Example 14-8

Consider the two-hinged arch shown in Fig. E14-8A. We work with reaction com-

ponents referred to the basic frame and take the horizontal reaction at B as the force
redundant.

X203 Fig. E14-8A

Primary Structure

We must carry out two force analyses on the primary structure (Fig, E14-88B), one for
Fhe §xterna} forces (condition Z, = 0) and the other for Z 1 = 1. The resulis are displayed
in Figs, E14-8C and D, respectively.

X2, 07 Fig. E14-8B
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Fig. E14-8C
P "
0 t'} M
0 i’ %P e
-
b
L? .
! Lp
N ® |/t
20 _a
W__.J._j Lt
Mp

Fig. E14-8D
1
s ol
4,11_
. I
-
H
L
| )
)
Nig

L
-H)
Ny

f=7x

() My

Compatibility Equation
We suppose the member is not shallow. The compatibility equations for Z, follow

from (14-74):
fl!Zl =4

L] 3 (IXL (a)
fi = L E}M'lcos()

. L , 0 M, 1\/1,1 dx
Ay =YRi1di— L [e‘f(NU + [N K+ e |

ety
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Using the results listed above, the various terms in (a) expand to

. L h 2 dx,
fus = J B [f - fJ s
h h
DR A= =Ty — ‘Emz + Tpy + 'Zﬁuz

L 0, 1 ) M.l
: ei(Ny g + f'Ny y) + k¥ ——dx,
cos 0

0

b
Teolt o) oro(r-2y) L ]a ©
- h of N .
0 “ L / L™ cos 0 '
L 1 L 1 h b
- dxy = | = L W =2 PV
[0 Ficos o oM 1 dx: LElcosf)(f L “)( L Y‘) “

. h P 1
+ “I';[‘E:a;@ f“f’xx (+ (Xx—”))‘xl

Once the integrals are evaluated, we can determine Z, from
Ay
= ©
fl 1
Finally, the total forces are obtained by superposition of the two loadings:
N;= N; o+ Z,N;, j=12
M=M,+2ZM,
Ri =Ry o+ Z{R; 4
R4 = Z’_

Z,

‘ (d)
i=123

To evaluate the vertical displacement at point Q, we apply a unit vertical load at Q on
the primary structure and determine the required internal forces and reactions plotted in
Fig. E14~8E.

Fig. E14-8E
X1 Lvga :

o1
. I
Xg1
=@ Moo
=)
( - ]"‘XQI/L
Mo
X
T e ()
. Py =+l
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Applying (14-73), we obtain

X,
Ugz = Vap + (Tp2 — Tuz) '*I%l

Xo1 X L
+ j e f dx, — »%l—J e f dx,

0 0

o1 K+ M\ dx, L o MY dx, ©
- X I —_ — X, KV — )

o ! EIJ cos ¢ ot You EI'/ cos 0

L .
Xo1 o MY dx,
SR N I Ca il Bt

+ LL Y‘( +El>cosG

A numerical procedure for evaluating these integrals is described in the next section.

Example 14-9

The symmetrical nonshallow two-hinged parabolic arch shown in Fig. E14-9A is sub-

jected to a uniform load per unit horizontal length, that is, per unit x;. The equation for

the centroidal axis is
4h x?
e =) o

where h is the elevation at mid-span (x, = L/2). We take the horizontal reaction at the
right end as the force redundant and consider only bending deformation. Figures E14-9B
and C carry through an analysis parallel to that of the preceding example.

Determination of Z | and Total Forces

The equation for Z, follows from (14-74):

L dx,
M oM e s
Ay Y " Elcos @ pL* :
Zy =t e = ®)
fu (M_,)? A o
Y Elcosf

Note that this result is valid for an arbitrary variation of EI. Finally, the total forces are

; pL?
Ny, =N ZNy | = —
1 1,0 + 1,1 Sh
A
M=Nm+ami=pn~7) ©

M=My+ZM, =0

Since M = 0, the deformed shape of the arch coincides with the initial shape when axial
deformation is neglected. It follows that (c) also apply for the fixed nonshallow case.

When the arch is shallow, the effect of axial deformation cannot be ncglected. The
expression for Z, follows from (14-78):

L 1 1 .
J‘o ((ZE) N1, ON], 1+ ~E7 ]\/[' OM, 1) dxl

A Lo
AEN]"I +E1AI’1 dx,
0

Z, = —

SEC. 14-7,
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[t

Nip=0

Nag =‘p(x1 ———24) My :%11

Force System Due to p

(1~

Primary structure

471

Fig. E14-9A

Fig. E14-9B
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1 E is constant, (d) reduces to
L 1 . p
plL? o Yf 1 pl? 1
LT T T TR
e e
o 4 ol ©
L
1
j —dx,
P
- X
o1

e influence of axial deformation. As an illustration, we

r & is a measure of th i :
The parameter § o

- consider 4 and I to be constant and evaluate ¢ for this geometry.
515 L _13(ey n
g 4h* 8 \h/

where p is the radius of gyration for the cross section.

be Fig. E14-9C
2
1 d 1

1° 0

Ny =+1 Npy =0 My =+f

Force System Due to Z; = +1

One should note that (¢) applies only for the shallow case, i.¢., for (f')* « 1. Now,

O P (@
=20

)2 must be small with respect to

For the assumption of shallowness to be valid, 16(h/L
unity. The total forces for the shallow case are

. B pl? 1
Ne=2v= "5 135

L h
N2=p<x1——2~> . ()

pL? (6 _P;({_.ﬁ)(_ﬁ)
M=o f\is) =2\ L)\ +3
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It is of interest to determine the rotation at B. The “Q" loading consists of a unit moment
applied at B to the primary structure (see Fig. E14-9D). Applying (14-77) (note that

Fig. E14-9D
X, o.E
\\M
Nl o = 0 @ IVI
Mg =7
l,(o,g
N pa
L B 1
L L
Py =+1
the stretching terms vanish since N, , = 0), we obtain
LM x, P/ s L x3
= | =, =)V =4 i
@s LE”,“ 2<1+6LE1 i L)x‘ @
When EI is constant, (i) reduces to
[7]_,3 ) )
Wy == e e
2= 24pi\1 + u

Since wy # 0, the results for the fixed end shallow case will differ slightly from (h).

14-8. NUMERICAL INTEGRATION PROCEDURES

One of the steps in the force method involves evaluating certain integrals
which depend on the member geometry and the cross-sectional properties.
Closed-form solutions can be obtained for only simple geometries, and one
usually must resort to a numerical integration procedure. In what follows, we
describe two procedurest which can be conveniently automated and illustrate
their application in deflection computations.

We consider the problem of evaluating

J= j f(x) dx . (14-79)

t See Ref. 8 for a more detailed treatment of numerical integration schemes.
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where f(x) is a reasonably smooth function in the interval x, € x < x; We
divide the total interval into n equal segments, of length h:

Xp T~ X4 (14-80)

n

- h =
If f(x) is discontinuous, we work with subintervals and use a different spacing
for each subinterval. For convenience, we let X, Xy,..., X, represent the

coordinates of the equally spaced points on the x axis, and f,, fi, ...,/ the
corresponding values of the function. This notation is shown in Figure 14-17.

f(x)

f() fl f2 f;l—-l Ju

h B

=

A h h

X0 Xy Xy

Xn~1 Xn
Fig. 14-17. Coordinate discretization for numerical integration.

The simplest approach consists in approximating the actual curve by a set
of straight lines connecting ( fo. /1), (f1./2), ctc., as shown in Fig. 14-18. With this
approximation,

Xk~ 1

Xl h .
Alioq = J‘ J(x)dx ~ E(fk-w + fi) (14-81)
J = L:fdx = Ji-1 + Aok
If only the total integral is desired, we use,
Xn n n-1 '
Jn = j fedx = 3 AJioy ;= h {%(fo + )+ ) fi} (14-82)
Xo i=1 i=1

which is called the trapezoidal rule.
A more accurate formula is obtained by approximating the curve connecting

three consecutive points with a second-degree polynomial, as shown in Fig.
14-19. This leads to

Xk +2 ) h .
A xiz = j fdx = g[fk + dfprq + firz] (14-83)

Jk+2’: Ji + AJk.k+2

To apply (14-83), we must take an even number of segments, that is, n must
be an even integer. If the values of J at odd points are also desired, they can

e e

SEC. 14-8.

NUMERICAL INTEGRATION PROCEDURES

be determined using

h
N S
kok+1 j;fd'? ~ 2 [5/; + 8fpry — fk+2]

Finally, one can express J, as

J h
n=glh+h+40h 10+ + fu-1)

AL Lot o+ )]

Equation ( 14-85) is called Simpson’s rule.

f

f

Xf — . e
1 Xie Xkaq

Fig. 14-18. Linear approximation.

475

(14-84)

(14-85)

—r 40 (_3
f=f + 7 ( STkt 24y “%fk»rz)'*" (%)2<%fk i+t +%f}c+2)

fk ﬁc+! fk+2
) h h
xk‘ : Xk 41 Xg oy

I

Fig. 14—-19. Parabolic approximation.
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Example 14-10

Consider the problem of determining the vertical displacemgpt at Q for the ;traight
member of Fig. E14-10. We suppose shear deformation is negligible. The deflection due

Fig. E14-10

to bending deformation (we consider the material to be linear elastic) is given by

LM
d, = — M, dx (a)
2 J:, EI°

where M is the actual moment and M, is due to the “Q” loading. Substituting for M o,
(a) expands to

LM o M e M XQJL ’M
_ el —dx ——= | x—dx (b)
dQ:xQ(J de OEIdx)-i-LxElcr L), “Er

0

e Y
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To evaluate (b), we divide the total length into n equal segments of length 4, number
the points from 0 to n, and let

Jp = -k;w‘ dx
o M ©
% M
H, = X —dx
o EI
With this notation, fb) takes the form
1
di = x [Jn - ZHn] + Hy ~ xJ, (d

If, in determining J,, H,, we also evaluate the integrals at the interior points, then we can
readily determine the displacement distribution using (d).

Example 14-11

Consider the simply supported nonshallow arch shown. We suppose there is some
distribution of M and we want to determine the vertical deffection at Q. Considering

Fig. E14-11

only bending deformation, dy is given by

M L M :
dg= | =Mgds=| (— _Vp 4
LE1 e ® L (51 cos 0) M. qdx ®
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Now, the distribution of M_,, is the same as for the straight member. Then, the procedure
followed in Example 14~10 is also applicable here. We just have to replace M/EI with
M{/EI cos @ in Equation (c) of Example 14-10.
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PROBLEMS

14-1. Specialize (14~7) for the case where v, = x;. Let x, = f{x;) and
let 6 be the angle from X, to Y, as shown below. Lvaluate the various terms
for a parabola

f=Cixg + Coxi

Finally, specialize the relations for a shallow curve, i.e,, where 0% « 1.

X, Prob. 14-1

Xy

14-2. Evaluate I* and 6 (see Equation 14-24) for the section defined by
the sketch.

14-3. Verify (14-34). ‘

14-4. Verify (14—41) and (14-42).

14-5. Discuss the difference between the deformation-force relations based
on stress and displacement expansions (Equations (14-25) and (14-42)).
Ilustrate for the rectangular section treated in Example 14—1. Which set of
relations would you employ? :

PROBLEMS 479
2t Prob. 14-2
d .t b= 0.75d
2 t=4dJ20
JL“ b “‘*“—“l t
14-6. Evaluate I' and I" for the symmetrical section shown.
¢ Prob. 14-6

b
T

b =0.75d
t=df20

S S — “‘l“.
]

14-7. Consider a circular sandwi i
| ch member comprised of three Ia ers
as shown. The core layer is soft (E « 0), and the face thickness 18 sma% m

comparison to the depth (d, ~ d). Establish force-deformati clati
on Strain X e (1430 C-deformation relations based

[NSTEN

Prob. 14-7
¢
/ T 77777, —L_ '
T
‘ d Core d,
/ _l_ TTTITITT777, as
T

R

14-8. Starting with (

. 14-34) and (14-35), deriv : .
displacement relations fo ) ( ), derive a set of nonlinear strain

r a thin member. Assume small finite rotation, and
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linearize the expressions with respect 0y, L.€., take

g = e — yak

Yi2 ® €2

Determine the corresponding force-equilibrium equations with the principle of
virtual displacements.

14-9.

Refer to Fig. 14—-10 and Equation (14-31). If we neglect transverse

shear deformation, t5 is orthogonal to {}, and we can write

(a)

(b)

(©

(1 + 81)052 = (1 - %) o

- 1dF - -
ty = &,E;:ﬁltl + Bat>
iy = —fals + Bila : (@)
iy, 1+ e, dry 1+"lg'
=R @wT TR
- dit
oc'=0(t1+21-s=(1+€1)oc

Verify. that ¢, can be expressed as

v g (e ]
&y = - ,Vz/R 1 Y2 R R (b)

1
e, — yok)
e

Also determine e, and R’ for small strain. Express ii in terms of the

initial tangent vectors,
i = uyl, + Usls
).

and take y = S(ie, o = i

Derive the force-equilibrium equations, starting with the vector equa-
tions (see (14-12) and Fig. 14--4),

dM . L=
w4ty x Fr=0
dS 1 +
and expanding the force vectors in terms of components referred to
the deformed frame: :
F+ = Flzll + Fzzlz
M+ = Mi:?,

E = bl-f,l + bzf’z

Assume small strain. A _
Derive the force-equilibrium equations with the principle of virtual
displacements. Take the strain distribution according to Equation (b).

PROBLEMS 481

(d) ?eriv;: th?1 nonlinear deformation-displacement and equilibrium equa-
ions for the cartesian formulation. Refer the translati i
‘ : . slations and
to the basic frame, i.e., take foading

ﬁ' = Ul-i1 + 1:"272

P = p{i + paiz

Specialize the equations for the case of a shallow member.

14-10. The accompanying sketch applies to both phases of this problem.
Prob. 14-10
hq = const
A
B
S
— — R = const
0 —@ ~—

(a) Determine the complete solution for the circular member shown
Utilize symmetry at point A (u, = o = F, = 0)and work with (I‘4~—5‘2)'
(]4—59_). Dlscuss the effect of neglecting extensional and shear d::j
formation, ic., setting (1/4) = (1/4) = 0.

(b) Repeat (a), using Mushtari’s equations for a thin member with no
tgr}almsverse shear defgrmation, which are developed in Example 14-2
;eg?]\:ert)}‘:aits ?hfl?éﬁl s approximation (u; « du,/d0) is valid when the

14-11. The sketch presents the information relevant to the problem:
Prob. 14-11
pa = const
A
T ) "
i
| a=2
n L L | L

X2
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482
14-18. Refer to Example 14-7.

{a) Determine the radial dis
Iy placement at B defined in Fig. E14—
(b) Determine the force solution for the loading gholxr:/f e B18T.

(a) Apply the cartesian formulation to the symmetrical parabolic arch
shown. Consider the member to be thin and neglect transverse shear

deformation.
(b) Specialize (a) for negligible extensional deformation (set 1/A = 0.

(c) Specialize (a) for the shallow case and investigate the validity of I
Marquerre’s approximation. I » Prob. 14—15
14-12. Referto Example 14-6. Determine ug, duetoa uniform distributed ‘
loading, b, = constant. ‘
14-13. Determine the displacement measures at B (sce sketch). Consider
only bending deformation. Note: It may be more convenient to integrate the
governing equations rather than apply (14-69).
Prob. 14-13 P .
Thin circutar member
B
\_ P
14-16. o il .
» cos 8 R\ 6. The sketch defines a thin parabolic two-hinged arch.
RN
A4 X Prob. 14-16
14-14. Solve two problems with the information sketched:
P
Prob. 14-14 P
A
Thin circular member )
A B
{ ; XL
‘ !
r‘ L .J(
=4 x
r= =)
I=1,/cos6

(a) Determine the hori .

" Contlr o bl
p2() per unit x;. (a) to obtain the solution for a distributed loading

() Determine o fxed end forces and adial displacement at point B () E;fermme the reactions resulting from a uniform temperature increase,
with the force method. Consider only bending deformation and utilize ! (d) Suppose the horizontal support at B is replaced by a prismatic member

Xien lng fr()]n A to ]9 ASS ume the ¢ IlIlCCUOIH are fIICUOnleSS hul €3,
™ g

symmetry at B. .
(b) Generalize for an arbitrarily located radial force.
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14-17. Consider the arbitrary two-hinged arch shown. Discuss how you

Prob. 14-17

would generate the influence line for the horizontal reaction. Utilize the resuits
contained in Examples 14-10 and 14-11.

15
Engineering Theory of
an Arbitrary Member

15-1. INTRODUCTION; GEOMETRICAL RELATIONS

In the first part of this chapter, we establish the governing equations for a
member whose centroidal axis is an arbitrary space curve. The formulation is
restricted to linear geometry and ncgligible warping and is referred to as the
engineering theory. Examples illustrating the application of the displacement
and force methods are presented. Next. we outline a restrained warping for-
mulation and apply it to a planar circular member. Lastly, we cast the force
method for the engineering theory in matrix form and develop the member
force-displacement relations which are required for the analysis of a system
of member elements.

The geometrical relations for a member are derived in Chapter 4. For
convenience, we summarize the differentiation {ormulas here. Figure 15-1
shows the natural and local frames. They are related by

=1
7, = cos it + sin ¢pb (a)
{3 = —sin ¢ii + cos ¢b

where ¢ = ¢(s). Differentiating (a) and using the Frenet equations (4-20),
we obtain

a ¢
s
drt, I R
— 0 K cos ¢ —~Ksing|it,
ds
d?z d¢ =
it — K cos ¢ 0 T+ IS t, (15-1)
df3 . ( d(/} -
7S K sin ¢ —\7: + s 0 ts

Note that a is skew-symmetric.
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