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Force Method-

Ideal Truss 

9-1. GENERAL 

The basic equations for the linear eometric case have the form 

P1 = B1F (a) 
e = BU 1 + B2 2 = eo + fF (b) 

P2 = B2 F (c) 

where the elements of B1 and B2 are constants. Equation (a) represents nd linear 
equations relating the nd prescribed joint forces and the m unknown bar forces. 
For the system to be initially stable, r(B1 ) = nd, that is, the rows of B must 
be linearly independent. This requires m > nd. In what follows, we consider 
only stable systems. If m = nd, the system is said to be statically determinate 
since one can find the bar forces and reactions using only the equations of 
statics. The defect of (a) is equal to m - d = q, and is called the degree of 
indeterminacy. One can solve (a) for dbar forces in terms of the applied forces 
and q bar-forces. We refer to the system defined by the nd bars as the primary 
structure and the q unknown forces as force redundants. In order to determine 
F, q additional equations relating the bar forces are required. These equations 
are called compatibility conditions and are obtained by operating on (b) which 
represents m relations between the nd unknown displacements and the bar 
forces. 

The general procedure outlined above is called the force or flexibility
method. This procedure is applicable only when the geometry is linear. In 
what follows, we first develop the governing equations for the force method 
by operating on (a)-(c). We then show how one can establish the compatibility
equations using the principle of virtual forces and discuss the extremal character 
of the force redundants. Finally, we compare the force method for a truss with 
the mesh method for an electrical network. 
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9-2. GOVERNING EQUATIONS-ALGEBRAIC APPROACH 

We consider the first nd columns of B to be linearly independent (if the 
system is initially stable, one can always renumber the bars such that this 
condition is satisfied) and partition B1 , B2 and F as follows: 

B1 =[ B I B1 2 ] 
(ndx m) (ndx nd) I (n x q) 

B2 =BzlB2 1 B2 2 ]
(r m) (r x nd) (xq) (9-1) 

(nd 1) 

F = ---

(qX 1! 

The bars corresponding to F1 comprise the primary structure and F2 contains 
the q redundant bar forces. Using (9-1), the force-equilibrium equations ((a) 
and (c)) take the form 

B1 1Fl = P - B2F2 (lid eqs.) (9-2) 
P 2 = (r eqs.) (9-3)B2 1F 1 + B2 2F2 

Since B111 0, we can solve (9-2) for F 1, considering P 1, -B 2 as right
hand sides. The complete set of q + 1 solutions is written as 

F1 = Fl,o + Fl,F 2 (9-4) 

where F1, o and F1, F satisfy2 

B lFl,,o = P1 (9-5) 
BItF,,F2 = -B 1 2 

Note that the kth column of F1, F contains the bar forces in the primary 
structure due to a unit value of the kth element in F2. Also, F, o contains 
the bar forces in the primary structure due to the applied joint loads, PI, with 
F 2 = 0. The reactions follow from (9--3): 

P2 = P2, o + P2. F2F2 

P2.0 = B2Fl.o (9-6) 

P2, F2 = B2 1FI, F2 + B2 2 

We consider next (b). Partitioning e, eo, and f, 
(nax 1) 

(n xl ) el 1 

e = 
( e2 J 

eo e2 oj (9-7) 
(qx 1) 

(nd x nd) 

f = f, 
[ ° (f2 

(q q) 
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and using (9-1), the force-displacement relations expand to 

(9-8)
B' 1U 1 + B21U 2 = et = elo + fFi (nhzeqs.) 

(9-9)
BT12U + B22U 2 = e2 = e2,o + f2F2 

(q eqs.) 

Once el is known, (9-8) can be solved for U1. 

We obtain the equation for F2 by eliminating U1 in (9-9). First (see (9-5)) 

we note that I I 

Bt 2 = -(B 1 lF1, 2)T = -F F (a) 
I 1 -

Then, premultiplying (9-8) by F F, adding the result to (9-9), and using 

(a), (9-6) leads to 
(9-10)

P2, F2U2 e2 + F, FLel 

= e2 ,0 + f2F2 + F,F2(el.o + fF 1) (9-11) 

The first form, (9-10), shows that the equations are actually restrictions on 

the elongations. One can interpret (9-10) as a compatibility condition, i.e., 

it must be satisfied in order for the bars tofit in the deJorimed structure defined 

by Ul. The second form, (9-11), follows when we express the elongations in 

terms of the bar forces. Finally, we substitute for F1 and write the result as 
(9-12) 

= d2f2 2F2 
where 

f22 - f2 + F, F2flF F, (9-13) 
d2 - -e2,0 - F, F2(e.o0 + ft. o) + Pt F2U2 

One can showThe coefficient matrix, f22, is called the flexibility matrix for F2. 

that f2 2 is positive definite when the bar flexibility factors in f2 are all positive.t 

If the material is physically nonlinear, f,, and eo.,, depend on F,. Iteration 

is minimized by applying the loading in increments and approximating the 
The incre-force-elongation relation with a piecewise linear representation. 

mental equations are similar in form to the total equations.+ We just have 

to replace the force, displacement, and elongation terms with their incremental 

values and interpret f as a segmental (tangent) flexibility. 

At this point, we summarize the steps involved in the force method. 

1. Determination of Fl, o, P2. o, F1. F2, and P2 ,F2 

We select a stable primary structure F, and determine the bar forces and 

reactions due to P1 and a unit value of each force redundant. This step involves 

q + I force analyses on the primary structure. Note that we obtain the primary 

structure by deleting q = m - nd bars. The selection of a primary structure 

and solution of the force equilibrium equations can be completely automated.' 

t See Prob. 9-1. 
: See Prob. 9-4. 
§ We reduce .1 to an echelon matrix. See (1-61). 
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2. Determination ofF ,2 F, , andP 2 

We assemble f22, d2, and solve f 2F, = d2 for F2 . Then, we determine F1 
and P2 by combining the q + I basic solutions. 

F1 = F1 .0 + FL,F,F2 

P2 = P2 ,0 + P2,FF2 

3. Determination of U, 

Once F1 is known, we can evaluate el, 

el = el,o + fF 1 

and then solve (9-8), 
BlIllU = - BlU2 

for Ut. 
If only a limited number of displacement components are desired, one can 

determine these components without actually solving (9-8). To show this, 

we write U as 
U1 (12,3-1 T J (a)Ul= B-1 I)Tel -"2u1)Tj 

We see from (9-15) that the kth column of B1 1' contains the bar forces in the 
Also, it followsprimary structure due to a unit value of the kth element in P1. 

from (9-6) that the kth column of B2 IB1 l contains the reactions due to a unit 

value of the kth element in PI. Now, we obtain the kth element in Ut (which 

corresponds to the kth element in P ) by multiplying the kth column of B 1'l by 

the kth column of B by and addingadding the two scalars. Then, lettinge,and 

Fl, jk F1 due to an unit value of Pjk with F2 = 0 
(9-14) 

P2, Pij = P2 due to an unit value of Pjk with F 2 = 0 

we can write the expression for Ujk as 

Ujk = F. pel - 2 , pjkU2 (9-15) 

Note that one works with the statically determinant primuar-v structure to deter
mine the displacements. 

Yvnl O'
CS"t·"·1]2F. M·-

Step I Deterntinationof F1. O, PZ. o, Fl1 F, and P2, F2 

For the truss shown in Fig. E9-1 A, 

d = 2 in = 3 q = 1 

We take F3 as the redundant bar force: 

F, ={F, F2 } F2 = {F3} 

The primary structure consists of bars I and 2. Note that all force analyses are performed 

otl the primary structure. The forces and reactions corresponding to P1 and F3 = + 1 can 

be readily obtained using the method ofjoints. The results are shown in Fig. E9-1B. 
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Fig. E9-1A 

X2 3' 

L 
1 7-- 10 kips 

(1) A1 =l.Oin.2 A2 = 0.5in.2 A3 =0.5 in. 2 

(2) Material is linearly elastic. E = 3 X 104 ksi for all bars. 
(3) e0,1 = -1/16 in. e0,2 = eo,3 = 0. 

(4) u32 + 1/10in. It4 1 =-1/15 in. 

Fig. E9-1B 

3.33 11/2 

-20.83 -5/8 -5/8 
-4.17 

10 kips 

20 kips 

We could have obtained the above results for Fl by solving 

BiIF! - - B 2F2 

which, for this system, has the form 

8+--. 1 F3}= {20 [ F3 

Step 2: Determination of f2 2 , d2, F1 , andF2 

Since only u3 2 and u4,, are finite, we can contract 02 and P2, 

P[= [P32, P41} 

12 =U 3 2. L141} 

and write 

P2 ,F2 U2 = (P2, F2 ) U2 
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The force matrices follow from step 1: 

Fl,o = {-20.83, -4.17} (kips) 

F. F = (kips)-8~ -8 

P2, F2 = {+I, + } (kips) 
Also, we are given that 

el , = {eo, , eo,2 } = { - -i6, (inches) 

e2 0 {eo, 3} = 

U2 ={q-mT, -6 } (inches) 

It remains to assemble f1, f2 and evaluate f2 2 and d2. 

The flexibility factors are (in./kip) 

12(25) 12(25) 12(20) 
J 3 x = 2 1.5 x 10'-. 5 x 104 

Then, 

f = ffi = [O I(I 

f2 = [f 3 ] = 0.8(2 x 10-2) 

Evaluating the various products in (9-13), (9-12) reduces to 

1.38F 3 = -7.31 (a) 

Solving (a), we obtain 
F2 = {F 3} = -5.27kips 

F1 = F, o + F1, F2F2 = 1 kps
0.87kips) 

Equation (a) actually represents a restriction on the elongations. The original form of (a) 

follows from (9-10). 
-- +T (b)e3 -e, - 2 =e 

Equation (b) reduces to (a) when we substitute for the elongations in terms ofthe bar forces. 

Step 3: Determination of the Displacements 

Suppose only u,, is desired. Using (9-15), 

' U 1U= F p,,el - (P.pL ,)7 (c) 

Now, 
j= {o,-Ts} 

el = e,.0 + fF = -.24, -. 018} 

We apply a unit load at joint 1 in the X, direction and determine the bar forces in the 

primarystructure and the reactions (P32, P41) corresponding to the nonvanishing prescribed 

displacements: 
-6Flp,,,,= ={-, 61J 

P2.,, = 0- 2 
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Substituting in (c), we obtain 

u,, = +.185 - .033 = +.15 in 

If both displacement components are desired, we apply (9-15) twice. This is equivalent 
to solving (9-8). 

9-3. GOVERNING EQUATIONS-VARIATIONAL APPROACH 

We obtained the elongation compatibility equations (9-10) by operating on 
the elongation-displacement equations. Alternatively, one can use the principle 
of virtual forces developed in Sec. 7-3. It is shown there (see Equation (7-14)) 
that the true elongations satisfy the condition, 

AFTe - APf 2 = O (a) 

for any statically permissible system of virtual bar forces and reactions which 
satisfy the constraint condition, 

B1 AF = AP 1 = 0 (b) 

Equation (b) states that the virtual bar forces cannot lead to increments in the 
prescribedjdint loads, i.e., they must be self-equilibrating. 

Now, using (9-4), (9-5), we can write 

F = :Fil f'-+ FiTj F (c) 

where 

(d) 

and 
B1 

Bq 
10F 
_S (e) 

Then 

AF = { AF2 (f) 

satisfies (b) for arbitrary AF 2. The reactions due to AF2 are obtained from 
(9-6): 

AP 2 = B2 AF = P2, F AF 2 (g) 

Substituting for AF and AP 2, (a) expands to 

AF(F, F2 el + C2 - P2, 2U2) = 0 (h) 

Equation (h) must be satisfied for arbitrary AF2. Finally, it follows that 

F1,F2el + e2 - P2 , F2U2 = 0 (i) 

Equation (i) is identical to (9-10). Note that the elongation compatibility 
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equations are independent of the material behavior. If the material is physically 
linear, (i) leads to a set of q linear equations in F2 when we substitute for the 
elongations in terms of the bar forces. 

We determine the displacements by applying the general form of the principle 
of virtual forces (see (7-10)) 

AFTe - AP2UJ2 = APIl j 1 (j) 
where the virtual forces satisfy the force-equilibrium equations, 

AP1 = B1 AF 
(k)

AP 2 = B2 AF 

Since only F1 is required to equilibrate P1, we can take 

AF = F,v, APt 
(I)

AF2 = 0 
and (j) leads to 

U1 = F, pel - PI2.p 1U2 (m) 
Note that 

F,, P, = B (n) 

One can interpret the compatibility equations expressed in terms of F2 as the 
Euler equations for the total complementary energy function, 

n = v* - P U = c(F2) (o) 

This approach is discussed in sec. 7-5. We take X = F2 in (7--35). Then, 

F._ LF ] P2. x = 2.F2 (p) 

and (7-37) coincides with (i). We have written the expanded form of (i) as 

= d2 (q)f2 2F2 

Since (i) are the Euler equations for Icl, 

dIlc = AF2(f 2 2F2 - d2) (r) 
and it follows that 

Ic = 1 FTf2 2F2 - Fd 2 (s)c=2 2 2

for the linearly elastic case. One can show that the stationary point corresponds 
to a relative minimum value of II when the tangent flexibility factors for the 
redundant bars are all positive. t 

9-4. COMPARISON OF THE FORCE AND MESH METHODS 

It is of interest to compare the force method for a truss with the procedure 
followed to find the currents in an electrical network. The latter involves the 

' See Prob. 9-8. 
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application of Kirchhoff's laws and is called the mesh method. Various phases 
of the electrical network formulation are discussed in Probs. 6-6, 6-14, and the 
governing equations for a linear resistance d-c network are developed in Probs. 
6-14, 6-23. We list the notation and governing equations for convenience: 

b = number of branches 
n = number of nodes 

N=n-1 
M=b-N=b-n+ 1 
Vj = potential at node j with respect to the reference potential, n-. 

k+, k_ = nodes at positive and negative ends of branch k 
ik = current in branch k, positive when directed fiom node k_ to node 

k+ 
ek = potential drop for branch k = Vk - Vk+ 

eo, k = emf for branch k 
Rk = resistance for branch k 

The governing equations expressed in matrix notation are (see Prob. 6-23): 

ATi = O (N eqs.) (9-16) 

e = AV = eo + Ri (b eqs.) (9-17) 

where 

i = il, i2, .- -, ib} 

e = {el, e2 . , eb (9-18) 
V = V , 2, , V N } .. 

R= 

R ,l 

R2L R 

and A is obtained by deleting the last column of the branch-node connec
tivity matrix a'. Note that a has only two entries in any row. For row k 
(k = 1,2,...,b), 

,4kk = + 1 

.dkk+ = -1 j k+ or k_ (9-19) 

e.kj = 0 j= 1,2,...,N 

Actually, d is just the matrix equivalent of the branch-node connectivity table. 

------- In ---

A network can be represented by a line drawing consisting of curves interconnected at 
various points. The curves and intersection points are conventionally called branches and 
nodes respectively. Each branch is terminated at two different nodes and no two branches 
have a point in common which is not a node. Also, two nodes are connected by at least 
one path. A collection of nodes and branches satisfying the above restrictions is called 
a linear connected graph. If each branch is assigned a direction, the graph is said to be 
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oriented. The connectivity relations for a network are topological properties of the cor
responding oriented graph. 

Consider the oriented graph shown. We list the branch numbers vertically and the node 
numbers horizontally. We assemble ._ working with successive branches. Finally, we 
obtain A by deleting the last column (col. 4) of s. 

Fig. E9-2
2 

3 

Node 
Branch 1 2 3 

1 -1 +1 I 
2 +1 A 

i 

3 +1 -1 
b 

4 -1 

5 -1 

6 +1 

N 

Now, A has N linearly independent columns. Therefore, it is possible to 
solve (9-16) for N branch currents in terms of b - N = M branch currents. 
We suppose the branches are numbered such that the first N rows of A contain 
a nonvanishing determinant of order N and partition A, i after row N. 

(N x N) 
(bx N) Al 

A = 

(M x N) 

(Nx 1) (9-2U) 
(bx 1) i 

i = -

(MX 1(A X1 
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Introducing (9-20) in (9-16) leads to 

ATil = - A2i2 (9-21) 

Since AII = 0, we can solve for i in terms of i2. We write the solution of the 
node equations as 

i = Ci 2 

(9-22) 

V;=[I] i2 
Note that C1 is of order N by M and is related to Al, A2 by 

C1 = -(A 2A t)T (9-23) 
It remains to determine a set of M equations for i2. 

One can express (9-17) in partitioned form and then eliminate V, or alterna
tively, one can use the variational principle developed in Prob. 7-6. Using 
the first approach, we write (9-17) as 

el = A1V = el, + Rlil (N eqs) 
e = A2V = e2. 0 + R2i2 (M eqs) 

(9-24) 

Once i is known, we can find V from 

A1V = el =el.o + Rtil (9-25) 
Eliminating V from the second equation in (9-24) and using (9-23), we obtain 

e2 + Cel = 0 (9-26) 
Equation (9-26) represents M equations relating the branch potential differ
ences (voltages). Finally, substituting for ej in terms of ij leads to 

(R2 + CITRCl)i2 -e 2 , o- Cel.o (9-27) 
The coefficient matrix for i2 is positive definite when the branch resistances 
are positive. This will be the case for a real system. 

The essential step in the solution involves solving (9-21), that is, finding C. 
Note that C1 corresponds to F, F2 for the truss problem. Also, the branches 
comprising A (and i) correspond to the primary structure. Although the 
equations for the truss and electrical network are similar in form, it should be 
noted that the network problem is one dimensional whereas the truss problem 
involves the geometry as well as the connectivity of the system. One can as
semble C using only the topological properties of the oriented graph which 
represents the network. To find the corresponding matrices (Ft, 0 and F, F) 
for a truss, one must solve a system of linear equations. In what follows, we 
describe a procedure for assembling C1 directly from the oriented graph. 

A closed path containing only one repeated node that begins and ends at 
that node is called a mesh. One can represent a mesh by listing sequentially 
the branches traversed. A tree is defined as a connected graph having no 
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meshes. Let bT be the number of branches in a tree connecting n nodes. One 
can easily show that 

bT = - 1 = N (9-28) 

We reduce a graph to a tree by removing a sufficient number of branches such 
that no meshes remain. The branches removed are generally called chords. 
The required number of chords is equal to b - bT = b - N = M. Now, we 
associate the branches comprising a tree with the rows of At. Selecting a tree 
is equivalent to selecting N linearly independent rows in A. The M chords 
correspond to the redundant branches, that is, the rows of A2 . Note that one 
can always number the branches such that the first N branches define a tree. 

Chord j and the unique path (in the tree) connecting the terminals of chord 
j define a mesh, say mesh j. We take the positive direction of mesh j (clockwise 
or counterclockwise) such that the mesh direction coincides with the positive 
direction for chord j. Now, the current is constant in a mesh. Suppose branch 
r is contained in mesh j. Then, the current in branch r due to a unit value of 
ij is equal to - 1 (- 1)if the positive directions of branch r and mesh j coincide 
(are opposite in sense). 

We have expressed the solution of the node equations as 

(Nx 1) (NxM) (Mxl) 

il = C1 i2 

Now, we take the elements of i 2 as the chord(mesh) currents. Then i represents 
the required branch currents in the tree. We assemble C1 working with the 
columns. The column corresponding to i involves only those branches of the 
tree which are contained in mesh j. We enter (+ 1, -- 1, 0) in row k of this 
column if branch k is (positively, negatively, not) included in mesh j. 

r.v,,,l n -a- -. . ... -

For the graph in example 9-2, N= n- 1 = 3 and b = 6. Then M=b-N = 3 
and we must remove 3 branches to obtain a tree. We take branches 4, 5, and 6 as the 
chords. The resulting tree is shown in Fig. E9-3. We indicate the chords by dashed lines. 

Fig. E9-3 

I ~ 0 3SP 

I -'r I 
4 v 

s _ 'Of 
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For this selection of a tree, 

i, = {il, i2, i3} i2= {i4, i5 , i6} 

The meshes associated with the chords follow directly from the sketch: 

mesh4 @,-(O, + 

mesh5 (), - ),f + ) (a) 

mesh6 (, - ( , +O 

To assemble C1 we list the branches of the tree vertically and the chord numbers hori
zontally. We work with successive columns, that is, successive chords. The resulting matrix 
is listed below. Note that C1 is just the matrix equivalent of (a). 

, - Chords 

4 5 6 

T I -1.' 0 + 
Branches 

of the 2 +1 +1 0 
tree 

1 3 0 -1 -1 

The matrices, At and A2, follow from Example 9-2: 

-1 +1 0 

A, = 0 + I 0 
0 +1 -I 
1 0 0 

A, = 2 -JI 
I2 E -1 

One can readily verify that 
C = -(A2A') 

The matrix, C = {Ct, Im}, is called the branch-mesh incidence matrix. Using 

(9-23), we see that A and C have the property 
(N x M) 

ATC= 0 (9-29) 

Also, we can express the compatibility equations, (9-26), as 

(Mx 1) 

CTe = 0 (9-30) 

The rows of Cr define the incidence of the meshes on the branches. Equation 

(9-30) states that the sum of the potential drops around each mesh must be 

zero and is just Kirchhoff's voltage law expressed in matrix form. The matrix 

PROBLEMS 223 

formulation of the network problem leads to the same system of equations 
that one would obtain by applying Kirchhoff's current and voltage laws to the 
various nodes and meshes. This, of course, also applies to the truss problem. 
The two approaches differ only with respect to the assemblage of the governing 
equations. In the conventional approach, one assembles the equations in

dividually. This involves repeated application of the basic laws. When the 

equations are expressed in matrix form, the steps reduce to a sequence of matrix 
multiplications. 
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PROBLEMS 

2 2 is positive definite for arbitrary9-1. Show that the coefficient matrix f,,
rank of F,1 F when f2 is positive definite. Use the approach suggested in 
Problems 2-12 through 2-14. 

9-2. Solve the following system using the procedure outlined in Sec. 9-2. 
Take X = {xl, x2}) 

2 2 3 ]{}2 

12 2 4 2 X3 (X13 

[2 {0y2 

l 2 L 0 0 0 2o X4 2 

9-3. Consider a system of m equations in n unknowns, ax c, where 

mn> n. Suppose r(a) = n and the rst rows o a are linearly independent. 
Let q = m - n. 

(a) Show that the consistency requirement for the system leads to q 
relations between the elements of c. 

(b) Interpret (9-10) from this point of view. 
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9-4. Develop an incremental "force" formulation starting with Prob. 9-7 

AP 1 = B1 AF 

AP 2 = B2 AF 

Ae = BT AU 1 + B2 AU2 = Ae + f AF 

where ft, Aef represent the flexibility factor and incremental initial elongation 
for the segment corresponding to the initial value of F. One has to modify 
both ft and Ae, if the limit of the segment is exceeded (see sec. 6-4 for a detailed 8 X2 
treatment). 

Consider the case where the loading distribution is constant, i.e., where only 
the magnitude is increased. Let Pt = A/ where A is the load parameter and i 

/ defines the loading distribution. Discuss how you would organize the XI 
computational scheme. Also discuss how you would account for either yielding 
or buckling of a bar. Distinguish between a redundant bar and a bar in the 
primary structure. 1 

9-5. Solve Prob. 8-3 with the force method. Take F3 as the force re
dundant.

I - I I_I1 
Y-o. Assemble 

shown. 
the 

_.. I 
equations or 

-
2 = 

-
iP, 

o 
g9, 

r - I 
,t) 

r 
o,lor 

. 
the 

. 
truss 

I Then 

d2 IIc = d(dl,) = AFT de 

n. Ai.. 
rrou. 

-
-U 

Express d2 1lc as a quadratic form in AF 2. Consider the material to be nonlinear 
1 -. .11 _ ., I· 1 I - · I _ 1 __ .

elastic ancd estallsn crtenra or mte stationary point to e a relative mnimum. 

i 9-9. Consider the oriented linear graph shown. 
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Prob. 9-9 
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(a) Determine A. 
.  15' ' 15' i (b) Determine C. 

(1) Material is linear elastic and the flexibility factors are equal 
(c) Verify that ATC = 0. 

(2) Only u42 is finite. Take U2 = {u14 2 } = tt 4 2. 
(3) Only initial elongation for bar 4. 

9-7. For the truss shown: 
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bars ), (@ as the redundant bars. 
(b) Express u 2 in terms of the elongations and support movements. 
9-8. By definition (see (7-26) and (7-31)) 

drfi = AFTe - APT2U 2 


