PLANAR DEFORMATION OF A PLANAR MEMBER CHAP. 14

wo-hinged arch shown. Discuss how you
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would generate the influence line for the horizontal reaction. Utilize the resuits
contained in Examples 1410 and 14-1 L.

15
Engineering Theory of
an Arbitrary Member

15-1. INTRODUCTION; GEOMETRICAL RELATIONS

In the first part of this chapter, we cstablish the governing equations for a
member whose centroidal axis is an arbitrary space curve. The formulation is
restricted to lincar geometry and negligible warping and is referred to as the
engineering theory. Examples illustrating the application of the displacement
and force methods are presented. Next, we outline a restrained warping for-
mulation and apply it to a planar circular member. Lastly, we cast the force
method for the engincering theory in matrix form and develop the member
force-displacement relations which are required for the analysis of a system
of member elements.

The geometrical relations for a member are derived in Chapter 4. For
convenicnce, we summarize the differentiation formulas here. Figure 15~1
shows the natural and local frames. They are related by

1=t '
cos it + sin ¢b (a)
= —sin ¢it + cos ¢pb

-} oy
i

st}
w N

where ¢ = ¢(s). Differentiating (a) and using the Frenet cquations (4-20),
we obtain :

dt )
as .
dt i R
1 0 Kcos ¢ —~Ksing||t,
ds
dt, S ||~
<»~C—z§>~ —K cos ¢ 0 T + 7S I, (15-1
dt 4 . d .
-2 - — i
- K sin ¢ (T + dS) 0 | 3

Note that a is skew-symmetric.
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Centroidal axis

" Local reference directions

Fig. 15—1. Natural and local reference frames for a member efement.

The curvilinear coordinatest of a point, say @, are taken as S and y,, y3.
Letting R be the pc)smon vector to Q (see Fig. 15-2),

= #S) + y2f2(8) + ¥aa(S) (15-2)

and differentiating, we find

%Ié = (1 — yaly2 — yaays)iy Viastsy + Vatasis

2}_{_ _i, (15-3)
oR .

Tl =1

9ys

The differential volume at Q is
d(vol) = (1 ~ yaay2 — y3a,3)dS dy, dy;
(15-4)
= (1 - f) ds dy, dy;,

C

where y, is the coordinate of Q in the normal () direction and R, = 1/K is
" the radius of curvature. Also,

R . - L dg
*F;S—‘fz = —y3la3 = V3 (Rz + s

— (15-5)
R (L, d
3 L3 = Yalz3 = )2 R " ds

+ See Sec. 4-8.
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and the local vectors at Q are orthogonal when a,; = 0, which requires

a23 = O
Y
de 1

T = -~

H=" 3

(15-6)

It is reasonable to neglect y/R terms with respect to unity when the member
is thin, ie., when the cross-sectional dimensions are small in comparison to

Y,
X3 R
AR |/ AR
a2 1y s
— t/ /
AR -
ayg, ! 2]
Pt
R l f
Z h=T=G
,.
Y3
X,

Xy

Fig. 15-2. Curvilinear directions.

R. and R,. We express d¢/dS as

dp (Mg | .
o) =

where L is the total arc length and A¢ is the total increment in ¢. The non-
orthogonality due to ¢ can be neglected when the member is only slightly
twisted, i.e., when

LA (15-8)

where b is a typical cross-sectional dimension. In what follows, we will assume
the member is thin, (15-8) is satisfied, and ¢ defines the orientation of the
principal inertia directions.
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Example 15-1
The curvature and torsion for a circular helix are derived in Example 4-5:

o L1 1
“RC_RIJr H\?
2nR

1 [(H\1I
"TRT\IR/R

where R is the radius of the base circle and H is the rise in one full revolution. The helix
is thin when b/R « 1, where b is a typical cross-sectional dimension.

Example 15-2

By definition, a member is planar if ¢ = 0 and the normal direction (i1) is an axis of
symmetry for the cross section. We take the centroidal axis to be in the X,-X, plane
and define the sense of £, according to f, x I3 = I3. The'angle ¢ is constant and equal to
either 0° (f, = n) or 180° (f, = —#). Only a, is finite for a planar member:

a13=az3=0 01257€= + K

Example 15-3
Consider the case where the centroidal
The member is said to be naturally twisted.
a1, = a3 =0

d¢

= s

If bk « 1, we can assume dR/3S is orthogonal to T, 5.

axis is straight and ¢ varies linearly with S.
Only «,; is finite for this casc:

= const = k

15-2. FORCE-EQUILIBRIUM EQUATIONS

To establish the force-equilibrium equations, we consider the differential
_clement shown in Fig. 15-3. Wec use the same notation as for the planar case.
The vector equilibrium equations follow from the requirement that the resultant

force and moment vectors must vanish:

_ (15-9)
am, . - -
—dS’ + m + tl X F+ = 0

We express the force and moment vectors in terms of components referred

to the local frame, —
F, =)Fi;=TF"t

M, =M"t
*B T (15-10)
o=m't
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—M. + M gs w
M, + 5 mdS

Fig. 15-3. Differential element for equilibrium analysis

whe = -
cre ¥ = {F\, F,, F3} etc. The vector derivatives are

dF,  4FT

ds T gt Flat
B, _awr ?
Also, ds das + Mat
. Lox Foo=Fofy — Fofly = {0, - F, F 7 )
Substituting i - i V ‘
DSt ;g;itllrz)r(llj 9), and noting that a” — —a, lead to the following equi-
dF
P ak + b =
IM 0
Eg—A*aM+m+ —F3b =0
|+F,
{
dF,
P a12F; — a3F; + by =0
dF,
a5 + aFy — a3 F, + b, =0 (15-11)
dF,
vl T aFy + ayF, + by = 0
dM,
a5 apM, — a M, + my =0
dM,
a5 T My — a3 My 4 om, — Fy=0
dM

‘;i? + a13M1 -+ a231W2 + msy + Fz =
When the m iS pl |
ember is planar, 13 = dz3 = 0 and the equations uncouple

nature “y i y i p
a mto two S Stems, one associated Wilh in- /ane Ioading (bl b m
» 2, 3,
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i M,).
F,, F,, M) and the other with out-of -plane loading (b3,‘ inl, mz,_F1 3/,R]\/[a ;d t121)e
Tix,e iil,ﬂplefne equations coincide with (14-14) when we set a,, =

out-of-plane equations take the form

Ei—'—hgl - }](?Mz +m =0 (15-12)
d
dxzﬂL%Ml +my — F3 =0

ING
FORCE-DISPLACEMENT RELATIONS—NEGLIGIBLE WARP

15-3.
RESTRAINT; PRINCIPLE OF VIRTUAL FORCES

i define 7* ementar
We consider the material to be elastic and define V* as the complem y

i i int, V*is a
nergy per unit arc length. Since we are ncglecting warping restraint, V
e
function only of F and M. We let

i=1,23 (15-13)

and write the onc-dimensional principle of virtual forces as

A 15-14
fsdP* dS = [s(e AF + k™ AM)dS = Y d; AP, (15-14)

AF,

Al + goait, (%)

I ]
| |
o | - du_ (as
! |ou +ak @)
-~ | |
i @) | | |
|
= L dw(dS
“’*'ds(z)
= g (dS @
wTgs (z

Fig. 15—-4. Virtual force system.
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Now, we apply the principle of virtual forces to the element shown in
Fig. 15-4. We define & and @ as

U= Yul, =ult = cquivalent rigid body translation
Vvector at the centroid (15-15)
D= Yol = olt= equivalent rigid body rotation vector

The virtual system satisfies the equilibrium equations (15-5) identically and
therefore is statically permissible. Evaluating Y d; AP,

Y d AP, = [Af+ ({% +Fox a) + AM, ‘%‘)J ds
1

= AF7 flﬂ — au + O) as + AMT d(x) i (a)
N ds +Z)3 g5~ 40 ) ds
2)

and substituting in (15-14) lead to the lollowing force-displacement relations:

0
du
e__dS——au-i- +603
)
@2 (15-16)
k = o — an
ds
{
ov* du,
1= *E‘P‘l‘ = ds T %l ~ agzuy
av*  du,
e; = ﬁz— = -a*s—‘ + GIZUI - 023U3 - W3
ov*  du,
@3 = -—éE = —{;:ST -+ 6113141 -+ (123112 -+ CL)Z
ev*  da
= (—’}x{—l— = ‘ES— — 6{12(1)2 - (113(1)3
oVt dw,
kZ = M = K -+ 61120).1 — 33005
%

ST AL T ';153 a0 + ayym,
3

Once V* s specified, the left-hand terms can be expanded. The form of &
depends on the materia] properties, the particular stress expansions selected,
and the member geometry. In what follows, we consider the material to be
linearly elastic and approximation V* with the complementary energy function
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i i -3
for the prismatic case, which is developed in Sec. 12

2

1 2
1 Vo, Y P2y — My
pr = Fed +op Pt o4, 22640 260 (15m)

1
1 0 M
+ kM, + El, M3 + kM3 + 2L,

e .
wher — torsional moment with respect to

the shear center
h respect to

MT::M1 +F2?3—F3_}72

— coordinates of the shear center wit

V2V i
o h the centroid

ng a 1 near € [)(\HS" n f r the “()Illlai siress
< l X 310 (¢] N
5=

Note that (15-17) 18 based on taki

>
d USng by StIeSS dlStIlbuUOn ptbdlCted by {hc L“glneel“lg lhe()( y

' b
ij:(ftu'*‘(fj\j )
I is the
i - tribution due to My and ¢ 1
stral orsional distribution nd ¢’ 15
- unrestrained ! In addition to thesc approximations, we

ie., we are considering the membf:r
ns for a linearly elastic

where ¢° is the u e
ral distri € » I3
flexural distribution du _ ‘
are also neglecting the cffect of cutvz.xFulr(c,‘ RIS
to be thin. The approximate force-displacemer
thin curve member are
+ LI duy ay Uy — 1343

e, =€}
1 AE dS
FZ MT— {hl—z

— Uy — W3
&= Ga i E§+a12”‘ 2313
2
F MT—, = C_iué Uy A+ sty + @2
‘33””@?1;*?;7”~ o T (15-18)
3= oy = g e T o
ky = kS + %%’7; = % + a0 — 42303
19
Iy = k3 + —EMIl = %C‘JSE + a30q T 42392
3

el IS

SEC. 15-4. CIRCULAR PLANAR MEMBER 493

When the member is planar, the shear center is on the Y, axist and there is
no coupling between in-plane (u,, u,, w;) and out-of-plane (i3, w,, w,) dis-
placements. That is, an out-of-plane loading will produce only out-of-plane
displacements. The approximate force-displacement relations for out-of-plane
deformation for a thin planar member are

F3 MT—- du:;

“TGa, G Tas T
M dw 1
ke — ¢ v —
=y 5 TR (15-19)
M dw 1
o o= kO 4 =02 D
b=l g = Tr™

where M, = M, — 7,F;. Note that flexurc and twist are coupled, due to the
curvature, even when the shear center coincides with the centroid.

15-4. DISPLACEMENT METHOD—CIRCULAR PLANAR MEMBER

Since the displacement method involves mtegrating the governing differential
equations, its application is restricted to simple geometries. In what follows,
we apply the displacement method to a circular planar member subjected to
out-of -plane loading, We suppose the cross section is constant and the shear
center coincides with the centroid. It is convenient to take the polar angle 4
as the independent variable. The governing equations are summarized below
and the notation is defined in Fig. 15-5.

Equilibrium Equations (sce (15-12))

dF,
5 + Rby =0
dM
_EBJ. — M, + Rmy =0 (@)
d
,24,0._2 + M, + Rmy — RF; =0

Force-Displacement Relations (see (15-19))

o = F, “ldu34+
3T G4, R T ™
M, 1 [dw,
kl'&ff‘i(de *“’2) ®)
M 1 (dw
= kK0 4 22 - (22 >
ko =la + 51 R(da o

1 The shear center axis lies in the plane containing the centroidal axis, which, by definition, is

a plane of symmetry for the cross section.
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Boundary Conditions
F or Uy
M . or o, » prescribed at each end (pts. A, B) ()
1
M, or w;
The solution of the equilibrium equations is quite straightforward. We
integrate the first equation directly:
F,=Cy — Rfpbsdb (15-20)
The remaining two equations can be transformed to
dm
I*M i _dmy @
E_oi“B“il"l‘Ml:I{(Fs”‘fﬂl (iO)
M, ©
= -—— + Rm
M2 dg 1

We solve (d) for M, and determine M, from (). The resulting expressions are

M, = CZCOSG+ C3Sin6 + Ml,p

(15-21)

d
MZ = -*C;_Sino + C30059 +EI—EM‘P + 1{"11

where M, , is the particular solution of (d).

X

Centroidal axis lies in the XX plane,
Y3,Ys are axes of symmetry.

Fig. 15-5. Notation for circutar member.

X1
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The solution of the force-displacement relations is also straightforward.
First, we transform (b) to

d;((;l + w; = RK§ ~ —g;— my + E{%(l + )M,
d
_d%i = g—ii — Rw,
where ¢, is a dimensionless parameter,
¢ = %%,Z (15-22)

which is an indicator for torsional deformation. Solving the first equation for

@, and then determining w, and u; from the second and third equations lead
to

i

w; = Cqco88 + Cssin @ + wy

RM,

w; = —Cysinf + Cyco8 6 + ——awy , — e (15-23)

d
dg
RFy;  R*M,
uy = C¢ — Rw; + i e /7]
P ! L[G@ GJ

where w, , i$ the particular solution for ;.

The complete solution involves six integration constants which are deter-
mincd by enforcing the boundary conditions. The following examples illustrate
the application of the above equations.

Example 154

The member shown is fixed at 4 and subjected to a uniform distributed loading. Taking

Fig. E15-4
b3 = const

9g

by = comnst in (15-20), we obtamm

Fy = Cy — Rby0 (@)
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The equation for M, reduces to

M
i+ My = RFy = RC, = R?bs (b)
Then,
M, , = RF; = RC; — R?b30 ()

and the solution for M and M, follows from (15-21),
My =C,c080 + Cysin 0 + RF;

d
M, = —C,sin 8 + Cy cos 8 — R*b, @
The boundary conditions at B require
F3=1\/11:M2:0 at OT—()B
{
C, = Rby0, (e)
C, = —R%;sin O,
C;y = R%b; cos O,
Replacing 8, — @ by #, the final solution is
Fy = Rhyn
M = R*bs[n — sin 5] )
M, = —R*b4[1 — cos ]

Example 15-5

The force system due to the end action, 5y, can be determined by applying the equi-
librium conditions directly to the segment shown in Fig. E15-5A. This leads to

F3 = FBS
My = Fp3R(1 — cos i) = FgaR[1 — cos(0 — 0)] (a)
M, = —FyRsiny = —Fp;Rsin(@, ~ 0)

We suppose there is no initial deformation. Using (a), the equation for w; becomes

a’w —~R*F s . .
'7152“1 toy=—pr (1 + ¢Jsin(0y ~ 6) (b)
The particular solution of (b) is
R*F
Wy, = — _277?3 (1 + ¢,) [0 cos(y — 6)] (©

Using the above results and specializing (15-23) for this support condition lead to the
following expressions for the displacements:

Wy = @4y COSO + Ty, sin b

R2Fys 1 — A 1+ ¢ '
+ _EI—ZE{{_TQ cos Uy + c,:’ sin § — ; i 0 cos(p — 9)}

—

B
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= =@y 800 + By, 0080 + R, e[ -1
i, : + cos 6]

- <];5) sin Gy sin 0 — [ LF &)y
2 B *“2““ 17 Slﬂ(@B — 8)} ()

Us =143 + Ry (1 — cos ) - Réd 45 sin 6
" BsFas 1—¢ .
EHIZ ~ 5 cos Oy — C,J sin 0 — ¢, sin 6y

1+ ¢ :
+ 0 ! cos(@, — £l .
[ 2 cos(fp ~ 0) + ¢ + a;r;[ég + ¢ sin(f, — 9)}

g
W

Terms involving D1, Dqp and Ty,

define the rigid body dis
movement. Also, terms involving ¢, y onaots due on ot

. are due to twist deformation, The rotations and

Fig. E15-5A

Wy Wi

translation at B are listed below:

Wpy = By €08 O + @4, sin 0,

R?Fps (1 - ¢ )
+ _Ejlv: {[—Tl cos O - C,J sin B — »1 ; G QB}

Wpy = =4 8in O + @y, cos 0z
Rzﬁm 1 —¢
w5, {E = 1] = = %sin? au}
Upy = T3 + R, (1 — cos 0p) ~ R, sin Op

N R3Fy, l-¢ :
WEIZ — T COoSs 93 Sm GE - 2Cz sin OB

1 3 EI
+ 0~ + = 2
’ [2 2t GA3R2]}

©
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To m estlgate the 131at1‘/e importan he various N
\Y mp! ce ()f the o (lef()] mation terms, we cor Slde]
the Iectangular Cross section Sho whn I“L.\“‘. ElS“‘5B Ihb (91 OSS~SCCt10nal pI'OpeK tf1es alet

1 61_9 1
E——gA‘SdZdB»

5= ta oy < 4 O
d, d3

=88

12
Then, E -[2 E [1 ((1—3>2]
“TGT T Glak\d, ©®
B, _E[1 (day— (ﬁiz)l
GABR'5 T G|l10\d, R

The values of 4k and ¢, for dyfd, = 1,2,3 and v = 0.3 ate tabulated below:

¢, = EIL/GJ

dyjd, 4k (for v = 0.3)
i 1.69 1.54
2 2.75 3.8
3 3.16 74

Fig. E15-58

i

T

d 3
Y2

Y3

stion i seloped in Sec. 11-3.
t The torsional constant for a rectangular cross section 18 developed 1n

e  ———
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Since (d,/R)? « 1, we see that it is reasonable to neglect transverse shear deformation. In

general, we cannot neglect twist deformation when the member is not shallow. For the
shallow case, we can neglect ¢, in the expressions for wy;, tps.

Example 15-6

Consider a closed circular ring (Fig. E15-6) subjected to a uniformly distributed twisting
moment. From symmetry, F; = 0and M, M, are constant. Then, using (15-16), we find

M{=0 @
M, = Rmy

The displacements follow from (15-18)

Uy =y = 0
- b
RM, R*m, ®
El, El,

X, Fig. E15-6

b3 =my =0

R my = const

15-5. FORCE METHOD—EXAMPLES

In this section, we illustrate the application of the principle of virtual forces
to curved members. The steps involved are the same as for the prismatic or
planar case and therefore we will not reiterate them here. We restrict this
discussion to the case where the material is linearly clastic, the member is thin
and slightly twisted, and warping is neglected. The general form of the
expression for the displacement at an arbitrary point and the compatibility
equations corresponding to these restrictions (see {(15-14), (15~17)) follow.
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Displacement at Point Q
= o \p 4 F, Fa o
do = ’ZRi,Qdi‘* L en top)ine A, )
Fs Mr\ M (15-24)
(G o (&) e
“ M
M Q4 =2 Mj g |dS
+ (k‘; + }—é) M, + <k3 + EI3> 3,9,]
Compatibility Equations
Z,Zy L= force redundants (a)
Fy=Fjo+ b Fj il
’ k=1
T ) 5
M;= Mo+ 2 Mie (b)
k=1
R; = R; o T Y, Ryl
k=1
S = 3 {15-25)
il = D (k=1,2....7
j;l kit j
where

1
! LR P, = FaFa
fkj =fjk = L[Z‘EFl,jFl,k -+ GA2 2,8 2. Kk GA3 J

(]
RS I T K

b A, ’ 3

S
M
maL st 9+ =M ]ds
+ (Agj’(’) Mo, + (k‘% + —5?) M, .+ (ks + Ezg) 3k

My = M, + vs3F; ~ ¥.F;

The reduced form for out-of-plane deformation is obtained by setting Fy =

FZ:M:’:e?“'ICg'—:O‘

-

mple 15-7 '
o atroidal axis is straight but the

Consider the nonprismatic member shown below. T he;;:et o e he o
orientations of the principal inertia axes vary. We take X, to

ipal inertia directi oint A).
' and X,, X5 to coincide with the principal inertia directions at the left end (p )
axis , X5 : cti |
The princi;al inertia directions are defined by the unit vectors &z, {3
i, = cos i + sin Pls
7. = —sin @i, + 08 Pi3
p=0 at X = 0

i

(a)
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Now, we consider the problem of determining the translations of the centroid at B due
to theloading shown in Fig. E15-7A. Itis convenient to work with translation components
(vgy, vgs) referred to the basic frame, ie., the X ,, X ; directions. We suppose that the shear

Fig. E15-7A

Y: Principal inertia direction

Centroid

Centroidal axis Py

center coincides with the centroid and transverse shear deformation is negligible. Spe-
cializing (15-24), and noting that M| = 0 for a transverse load applied at the centroid,
the displacement expression reduces to

1 /1 L
dy = EJ; (‘I—;M2M2,Q + EAJ_‘,M:”Q) dx, (®)

Force Systems
The moment vectors acting on a positive cross section due to P,, P applied at B (Fig.
E15-7B) are .
(JE)PZ = Pl — x4)i3 ©
(M)p, = —P3(L — xJi,
To find M,, M, we must determine the coraponents of M with respect to the local frame.
These follow from Fig. E15-7C:
For P,,
M, = Py(L — x)sin ¢ @
Mj = Py(L — x()cos ¢
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Fig. E15-7B
Pyi;
‘ P33
Pyl —x1)Ta i
—P3(L —x)
Fig. E15-7C
&
Moty
— Py (L )T
Mils =)D
For P M, = —P3(L — x,)cos ¢ ©
M, = +Py(L — x;)sin ¢
Determination of Uz Due to P, .
. i .
The virtual-force system for vy, corresponds 10 p,=+1 Introducing (¢
< ~ S
obtain A ,
b _P ’ ilfii[z‘kfﬁls_il)]ud — x P dxy ()
b =F U L I

Deteymination of Up3 Dueto P,

i sto
m for vy corresponds to p, = +1. Using {c) leads

P, j’" <_i + 1_> (L — x;)? sin ¢ cos ¢ dxy (&)

Ups = p 0 I, I

s

The virtual-force syste

SEC. 15-5. FORCE METHOD—EXAMPLES 503

Example 15-8

We rework Example 15-6 with the force method. Using symmetry, we see that
M =0
M, = mR (a)

Suppose the rotation o, in the direction of my is desired. The virtual loading for this
displacement is m;, = + 1. Starting with

M
w; Amg dS = & ~2 AM, dS (b)
EI, :
and substituting for M,, we obtain
_ mR? i
o = ©

Example 15-9

Consider the closed ring shown. Only M| and M, arc finite for this loading. Also, the
behavior is symmetrical with respect to X, and we have to analyze only one half the ring.

Fig. E15-9

1, J are constant

We take the torsional moment at § = 0 as the force redundant. The moment distributions
are

T .
M, = ~2~sin€) + ZycosO® =M, o+ Z M,

T
M2=-2vc059~lein9=M2,0+ZlM241 —
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Specializing (15-25) for this problem,
fuzx = A
M oM M, oMy,
A, = —2R : e L= | df b
! J_n,z[ GJ e, | )
" ME L M3
o man [ [ 20
H 2l GJ T ELL
and then substituting for M, M,,
LEVAS' 1
A, = —RT J_n/z (63 - E12> sin @ cos 6 dO
©

RT [ | 1
B —_M—<~> - ﬁw) [sin® 0]75,, =

and it follows that Z, = 0. We could have arrived at this result by noting that the behavior
is also symmetrical with respect to X';. This requires M, to be an even function of 0.
The virtual-force system for w4, s T = + 1. Using (15-24) and (a) leads to

%2 /T sin 0\ sin 0 T cos 8\ cos 0
= e — ) e d
2041 2RJ K 2GJ> 2 +( 21312) 5 }’0

—n/2
_ RTﬁ IN + 1
Q=G T EL

Example 15-10

We analyze the planar circular member shown in Fig. E15-10A. The loading is out-of-
plane, and only F3, M, and M, are finite. To simplify the algebra, we consider the shear
center to coincide with the centroid and neglect transverse shear deformation. It is con-
venient to take the reaction at B as the force redundant.

X2 Fig. E15-10A

~Pi3  (Displacement restraint
in X3 direction at B)

X3 o /

X1

A e S S i
e O—

e T —
et it . i

S
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Primary Structure

The primary structure s defined in Fig. E15-10B:

il _ e Ry= My Ry = —~M,,
1=y, d;, = @, di = 7
42 3= Oy
R4 = Zl = FBB ({4 - 1 (a)

g,

Fig. E15-10B

Force Analyses

The force solutions for the loadings shown in F ig. E15~10C are:

For P:

FOer = +1:

Fy o= 4P
My o = PR[1 ~ cos(y — 1e)]
M.z.o = —PRsin(y — y,) (b)
Ne < < O
Fy = +1
M, = R(I - cosy) ©

M,y = —Rsiny
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Fig. E15-10C
A
fu . X
fir=R " Mt-l +M-2’—1]d:7
1 o L GJ El, y
4 o [ M, oMy, 1 ( 0 .A.I;Q)M }d;]
L2k - 2,1
Ay = };1 Ri,lai - R LB'W[ GT 2 El,

i i i ressi
Substituting for the internal force and reactions, We obtain the following €xp
for fy, and Ay:

fi = Bi Lt}f.’) 0y — 2¢ sin 05 — (1 ; (i“) sin 0p €08 91;]
11— EIZ 2

— R gy{l ~ cos bg)

Al = Ugy — Tig3 + R4, SN 65

. - 0n , kg sin(GB — 0)8
Jog—te

_ ffi[c, {OC [1 + 1Ecos(@;; - GC)] ~ sin fp — sin 0
I,

1 .
+ sin 85 cos 0. — 5 cos Og sin Gc}

+ 1 {Gc cos(fp — 0c) — cos g sin Gc}]
2

El,
“= Gy

i : le 15-5
Note that we could have determined A, and fy; vsing the results of Exampile

(@

ons
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15-6. RESTRAINED WARPING FORMULATION

In what follows, we consider the member to be thin and slightly twisted.
Referring to Fig. 15-2, these restrictions lead to

dR -
F
d(vol) = dS dy, dy,
Therefore, in analyzing the strain at Q (S, y,, y3), we can treat the differential
line elements as if they were orthogonal. The approach followed for the pris-
matic case is also applicable here. One has only to work with stress and strain
measures referred to the local frame (£, £,, {4) rather than the global frame.
Our formulation is based on Reissner’s principle (13-33):
S[fffteTe — bTa — V*)d(vol) — [fpTii d(surface area)] = 0
6, i = independent quantities
£ = &) (a)
p, b = prescribed forces
V* = V*o) = complementary energy deunsity

(15-26)

i

We introduce expansions for i, ¢ in terms of one-dimensional displacement
and force measures (functions of S) and integrate over the cross section. The
force-equilibrium equations {ollow from the stationary requirement with respect
to displacement measures.

We start with the strain measures, &€ = {&(, ¥12, y13}. One can show thatt

- 0]
£ X il
1 1 as
o7 A7
- c - (&
~ H el S St —
Y12 by avl 2 EN (15 27)
; o i o
) ~ S 3 *
Y13 U EETS

where i is the displacement vector for Q (S, y,, v,). We use the same displace-
ment expansion as for the prismatic case:

ﬁ = QIZI + l’lz-’i + ﬁ3i~3

Uy = uy + ¥y — Wy, + f¢
fty = Uy — 1(¥3 — Fs) (15-28)
liy = Ug + 0y — Ts)
= B(¥2 ¥3)
Expanding
{fee dy, dy, = ”(171151 + 0y2v12 + 013y13)dy, dy; (a)

+ See Prob. 15-5.
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leads to
““TS dy, dys = Fie; + Fye, + Fyey + Myky + Mk,
+ Msks + Mpf + Myf
€1, €5, ..., ks (defined by (15-16)) (15-29)

M, = ”0114? dy, dys
My = [[[o12(d 2 + a1,0) + 0,3(¢,5 + a3d)]dy, dy;
The equilibrium equations consist of (15—11) and the equation due to warping

restraint,
Mg = M, ; (15-30)

which can be interpreted as the stress equilibrium equation for the ¢, direction

weighted with respect to ¢.
Now, we use the stress expansion developed for the prismatic case. The

derivation is discussed in Sec. 13-5, so we only list the essential results here.
The normal stress is cxpressed as’

F, M, M;, M,
=l D2y 3y 15-31
T = + i Y3 I, yz + i, ¢ ( )
where ¢ = —¢i°, the St. Venant warping function referred to the shear center.

We write the transverse shear stress distribution as

g = l//ZFZ + 1/:3'[73 + ¢’u l’;’ + !//']\/19‘ (15*32)
My = M% + M :

(Ys-are functions of y,, y3.) The corresponding complementary energy function

1 (F? M} M? 1 (M
V= Jivrdydys = ﬁ(ﬁ L) T\,

1 [F2 2F,F, F} 1 5 .
e = e - R 1 C ¥ 15-33
+2G<A2+ Ass +A3 +2GJ( o) + GM) ) ( )

1 .
+ ’G‘j(Fz,Var + F3y, )M

1S

Also, (15-32) satisfies (see(13-50))
{0120, 2 + 0130, 3)dy, dys = My (b)

Finally, noting (b), we express My as

where the b’s involve the curvature (a5, a;3). If the cross section is symmetrical,

Az = Y3, = Yo, = b, = 0 (¢)

SEC. 15-8,
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and b,, b, are > ili i

a thjsz Ca;e to (ti}[lliet(l)) sdf—zthgratmg stress distributions.}L It is reasonable

b 2 . 2 ¥ b3 = 0 and compute the shear i )
ed on the primary flexural shear Stress distributions coethcients e 4)

p g © .
ISX a"d“l the Sta.t 1onar requit cment Wi CC t() yree measur €S leldg
th Ires f(

oV oV 14 v
1= »51.\. ky = = ky = ?’.ﬁ fo= v
) oM, oMy T o
av* oV ’
e + by f = o v
2_ oF, e3 + by f = o, (15-35)
ky = E—Ki ky + (1 + ¢ o
ZE T
where e, ¢,, . . . ar
1 € s k3 are defined by (15-16). The corresponding unrestrained

warping relations are (15-18).

Example 15-11 —
—
_—

To investigate the
Stiga € influence of warping r i
havin ‘ _ arping restraint, we consider a ar circ
g a doubly symmetricg] cross section (Fig. F15-] 1), clamped a?l(?rrll . C(limu](;nr omoer
8 : ¢ end and subjected

A4
Fig. E15-11

@

 See Prob. 15-6.
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Force-Displacement Relations
El, (dw,
M2 = EIZI(Z = '———R—- —;i"é* + Wy
EJ,df

Me="R 1 ®)
f=—k = —~

. MY = Gk,

Boundary Conditions
=0 o, =w,=f=0 ©
0 = 0g M, =M
: My=0
M, =0
One can write the equilibrium solution directly from the sketch:
M, = M cos(@p ~ 0) M, = M sin(@g — 0) (d)
We substitute for the moments in the force-displacement relations.
E 1, d*k,

GIky = " g

1 [dw 7
kl = 'i{-(‘“d/o—l - Cl)2> (C)

1 [de, M .
= o | - = e § 0 - 0
k- R ( 40 + wl> i, sin(fp )

M, = M cos{fz — 0)

i

and solve for k,, and then ;. The resulting expressions are
GJ - i El,
2 e 4, = e
M= El 4. = RA ¢ e ]
k, = ———~M——I— {cos(0p — ) — cos O[cosh 70 — sinh 70 tanh 101}
GJ + —5"
K ]
L 1{6 cos(fp — 0) — sin @ cos 9,,}

RM\ 2
El,)

{ 17 .
+ 2 %9cos((~),; — ) + |~ — 5 |sin 0.cos 05

B\ 1
(l+?> l+.72‘

- ‘;——-717 [sinh 76 — tanh A0 cosh 20 + cos 0 tanh 0p)
1+

Warping restraint is neglected by setting E, = Oand 1 = 0.

|
|
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The rotation at B is
on 1 . ,
(iﬁj = 5(03 — sin By cos 0) + ¢, K
ED g
o o A @
= T "2*93 + sin 0 cos Oy S e cos .0,, tanh 20p
1+ 72 1+ ’7:5
If we set
L ~ L.
R = ——— "_ S — h
0. "6, (k)

and let 050, (g) reduces to (13-57), the prismatic solution. The influence of warping
restraint depends on 7 and 0. Values of K vs. 7 for 0, = n/4, /2 are tabulated below:

K

n
E; = A for 91, = 5
1+ =
.
K_ 1 27" 2 T tanh 7 . T
Ko . 1|= n T | orfp=73 @
T+ i+ 1 1+"‘+:§7
252 72.-
1
K, = ~2-(03 + sin O cos O)
K/Ky
7 for 0y =mnj4 04 =n/2
1 0.179 0.500
5 0.786 0.96
10 0.907 099
We showed in Chapter 13 that
t
A=0 (ﬁ) (open scction)
' 0)

1
A=0 (ﬁ) (closed section)

where ¢ is the wall thickness and h is a depth measure. Since 1 = R and R/h > | for
a thin curved member, the influence of warping restraint is not as significant as for the
prismatic case.

i5-7. MEMBER FORCE-DISPLACEMENT RELATIONS—COMPLETE
END RESTRAINT ’

In the analysis of a member system, one needs the relations between the forces
and displacements at the ends of the member. For a truss, these equations
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reduce to a single relation between the bar force and the elongation. Matrix
notation is particularly convenient for this derivation so we start by expressing
the principle of virtual forces and the complementary energy density in terms
of generalized force and deformation matrices.

Referring back to Sec. 15-3, we define

ov*
el |aF; F F,
&= -4 = {-Zi F ==L 5
AR MR IS it ST
oM;,
and write the principle of virtual forces as
[sdV*dS = |3 8T AF dS = d" AP (15-37)

Note that we are working with M ,, not M. We use the complementary energy
function for a thin slightly twisted member with negligihle warping restraint
(ie, (15-17)). With the above notation,

Eq. (15-17) = V* = (' F + 37 "¢3

where )
gf gfm
g =|"Fr— 15-38
| & gnJ ( )
- 1 =
— 0
AE 0
_ L 7 VT
&= 4,6 T 6T GJ
{ V3
hSym e e G7
r‘() 0 0“ ! 0 0 ]
T
|7 - B
gfm - GJ 0 0 Emn = h[z 0
V2 1
s 0 O_’ _Sym il |
The force-deformation relation implied by (15-38) is
& =&+ gF (15-39)

We will use these general expressions for planar and out-of-plane deformation
as well as for the arbitrary case. One has only to delete the rows and columns

]

P
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of g corresponding to the zero force measures. For example
'y

T = {F1F2M3}

?3“—:0
[1 | ]
0 |0
I
g=lo L 1o
" FG | (15-40)
A6 L
1
0 o0 -
A | ET

for planar loading applied to a planar member.
Finally, we substitute for & in (15-37) and distingui
,W s : ) stinguish between prescribed and
unknown displacements. The principle of virtual forces expands to

0 GNT A g J¢
[s(6° + 8)" AF7 dS — dT AR = 47 AP (15-41)

thzre d contam.s prescribed displacements and R are the correspondi
tacl(;ons; d contams unknown displacements and AP are forces cc;Fresp::lgdi;eg—
C(() u2.1tiThe wlr;lialuforcc‘systcm (AP, AR, AF) must satisfy the force—cquilibriun;
Juations, ( : 11). Tt is more convenient to rencrate & and R with the equili
brn:m equations for a finite scgment rather than attempt to solve (15-—1% o
Copsxder thc; arbitrary member shown in Fig. 15~6. Each end is compl ).1
restrained against displacement. The positive sense of § is from A toI:};riimBy

X
B
. A
ign b
- xn

-
~Basic member frame

x7

Fig. 15-6. Arbitrary curved member.
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We suppose the geometry of the member is defined with resp;:gct totha tf)as(x;c
i d take the end forces at B as the force
frame which we refer to as frame n, an ' :
redundants. Then, the primary structure consists of the member cantilevered
from A. ‘ .
Throughout the remaining portion of the chaptgr, we will employ the noFaStloX
for force and displacement transformations that is developed in Chaptmwil
superscript n is used to denote a quantity referred to thg ba;zc fr axmc.1 ;n
no frame superscript is used, it is understood the quantity is referrec to the
local frame. For example, % represents the internal force matrix at pomt]Q
referred to the local frame at . Note that 7, acts on the p(/);ltl;ve fa;e.ng; ;3
i i 3 € s at A, B are de
force matrix for the negative face is — %4 Theend force:) at F
by ", &% and are related to the internal force matrices by

Qi

+ T = BT,

b= (15-42)
377'/'4 = ,..f/»'/'i = __;7‘”"51/7/‘
Also, the displacement matrix at point Q is written as %,,.
u
= 5-43
Uy = {uy, Uy us | w0, 03}g = {m}g {1 )

; oy e .scribed.
For this system, % and %} are prescribec ' - )
" i d]/ll" for the primary structure, i.c. the member cantilevered
e | ied al the member
from A, due to displacement of 4, tempcrature, loads appll’u" along th j T
and thé end forces at B and then cquate it to the actual #%. The virtual-force

system is

Al_’ = Aﬁo;f";; _
AR = AT = — T3, AT (a)
AFy = T ATy = ROX o AT
Also, B
d = U (b)
d=am

Introducing (a), (b) in (15-41), we obtain

. n NT o S g \T( @0 " S
AFyray = AFY (@300 + [ (7565 + g0 ]
! ©)
S . X
Uy = Ty U + [ TG + TS

Next, we express F  as

O/_;Q = eg;Q)O + -7‘—%’&-0}:% (15“44)
where &, , is the internal force matrix at Q due to tl_le prescrxbe.d c{(terlflal
loading a%plied to the member cantilevered {rom A. Finally, substituting for
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F leads to

S .
Wi = Lyl + (7 T8 + g0 o)ds
S 4
N (15-45)
+ [ 807 S |7

The first term is due to rigid body motion of the member about 4 whereas
the second and third terms are due to deformation of the member. We define
¥ as the member deformation matrix:

V= Ul — U (15-46)

duc to rigid body
motion about 4

By definition, #™ is equal to the sum of the second and third terms in (15-45).
We also define

Sn 7 g y ey . .
1o = J’S T (&Y + 807 g, 0)dS = initial deformation matrix
A

(15-47)
Sg e .
" = L (7557807 18,)dS = member flexibility matrix
Sa
and (15-45) reduces to
V= Uy — AU = 4 e (15-48)

Equation (15-48) is the force-displacement relation for an arbitrary member
with complete end restraint. It is analogous to the force-elongation relation
for the ideal truss element that we developed in Chapter 6.

The member flexibility matrix, 7, is a natural property of the member since
it depends only on the geometry and material properties. For simple members
such as a prismatic member or a planar circular member with constant cross
section, one can obtain the explicit form of f. When the geometry is complex,
one must generally resort to numerical integration such as described in Sec.
14-8 in order to determine { and #"o. This problem is discussed in the next
section. Finally, we point out that the general definitions of f, ¥~ o are also valid
for in-plane or out-of-plane deformation of a planar member. One simply has
to use the appropriate forms for the various matrices.

Up to this point, we have considered only a simple member. Now suppose
the actual member consists of a set of members rigidly connected to each other
and the flexibility matrix for each member is known. We can obtain the total
flexibility matrix by compounding the flexibility matrices for the individual
elements. To illustrate the procedure, we consider two members, 44, and
A B, shown in Fig. 15-7.

The matrix, ", contains the displacements at B due to the end forces at B
with A4 fixed:

Uy =T (a)

Now, suppose point 4 1isfixed. Then, the displacement at B due to the deforma-
tion of member 4, B is

n — fn Tz 1
OZIB; member fAlBy’B (b)
A4,B
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where % is the flexibility matrix for member A4;B referred to frame n. The
! .
additional displacement at B due to movement of 4, is

__ agpn. Toyn ¢
(J][?})displaccmcm atAd, — V?'”B/MQIAL ( )

It remains to determine %7,

b 4 )
1
A
Xy B
X/

Fig. 15-7. Segmented member.

The force system at 4, due to the end forces at B is given by

Fh = Xy, Tk (d)

and the resulting deformation of member AA, is
Y ) Zn e
Uy, member 44, = Faa Ty = Tap, Xlpp, 7 (e)

Finally, we have

1 = o + X, Tha )T = 7Y (15-49)
The end forces at B are found by inverting (15-48):
k* = (f")” ! = member stiffness matrix
Fh = K0T = 15) (15-50)

=~k + KUy — KA

The first term is due to external load applied along the member and represents
the initial (or fixed-end) forces at B. For convenience, let

Tn _ 1
'713,1' - k™ 0

(15-51)
The second and third terms are the end forces at B c%ue to end displacement_ at
B, A. Once %7 is known, we can evaluate the interior force matrix at a point
, A

using (15-44), B

g( ) yg = eé/TQ 0 + “0/“‘%11Q'/o‘p% (a)
Thus, the analysis of a completely restrained xn§ml?er reduces tp aset o{ matrlg
multiplications once the member stiffness and initial deformation matrices are
established.
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When analyzing a system of members by the displacement method, expres-
sions for the end forces in terms of the end displacements are required. In
addition to (15-50), we need an expression for 7. Now,

Thy= ~Fh = —Fh o — AT (b)
Substituting for 7%, leads to
Fh=Th ~ Xk Uy + k" X5,

7 " 15-52
Fhi=—Fho— Xn T, ( )

where 9 | represents the initial end forces. In order to express the equations
in a more compact form, we let '

b = k"
b= TG (15-53)
B = (k;'m)] = =Xk
Kiu = 2300057 = — 2,40,
With this notation, the force-displacement relations simplify to
Fh=Fn . + Kips + K}y, (15-54)
Flh= F i + Kty + K0 ‘

Note that only k" and Z'pa are required in order to evaluate ky, and k% .

15-8. GENERATION OF MEMBER MATRICES

The member flexibility matrix is defined by

n Se g nq. T 7 o
" = JS (,j BQ anjné)dé (a)
Noting that - :
T = AT, )

_ and letting

ga — e%nq. TgQ'U ng (15‘55)
we can write
n Sp gyn. Ton grn \
- L(,{BQ 2o po)dS (15-56)

If numerical integration is used, the values of the integral at intermediate points
along the centroidal axis as well as the total integral can be determined in the
same operation. This is desirable since, as we shall show later, the intermediate
values can be utilized to evaluate the initial deformation matrix.

We consider next the initial deformation matrix:

N Se g nq, Ty @O g B
0= j.sA T80 (6o + 89F g, 0)S (c)

We transform &,g, and % from the local frame to the basic frame, using (15-55)
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and
G — PG
Fo=R /T 0 (d)
Eo = R E,
The contributions of temperature and external load are
~H Sp "
(¥ 0)emp. = L,. (X5 R T&J)dS (15-57)
S
("0 1osa = LA (g 8o F b 0)dS (15-58)

Suppose there is an external force system applied at an intermediate point,
say C. Let P¢, T denote the force and moment matrices and 2 the total

force matrix:
P
Pe = { C} (15-59)

Normally, the external force quantitics are referred to the basic frame for the
member, i.e., frame n. The initial force matrix at @ due to this loading is
given by

Fo.0=XeqPt  Sa < Sy <S¢ (15-60)
;‘7/.;6’020 SCSSQSSB
Writing
Xo = XX s (e)
and introducing the above relations in (15-59) result in

SC(

THT A BMS | (X D) 0

The bracketed term is an intermediate value of the integral defining . Finally,
we let

D= ||

Sa

Sp n, Tt gpn
Jp = LA (T gh NS (15-61)
With this notation, (f) simplifies to
Vo = T T )P (15-62)
Also,
"= J, (15-63)

The determination of the member flexibility matrix reduces to evaluating
J defined by (15-61). One can work with unpartitioned matrices, i.e., &, g,
but it is more convenient to express the integrand in partitioned form. The
partitioning is consistent with the partitioning of & into ¥, M. Since the
formulation is applicable for arbitrary deformation, it is desirable to maintain
this generality when expanding &, # in partitioned form. Therecfore, we define
o as the row order of F and 8 as the row order of M.

¥ (xx 1)
G — ) .
& {M} D) (15-64)

Continuing, we partition &, # and g symmetrically, consistent with (15-64),
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and simplify the notation somewhat:

I L0
n o __ ) e |
Xpo = [ T
ABO l Iﬁ
(B xa)

X
(15-65)
(a % 2)
| .
R .B?ﬁ__ | _~QA -
0 T
I )
(B x )
(0;;('1) | (ax f)
)
g) = FLL__'F,*E(IZ
; 3
g5’ I gbh
(B xp)

The translation and rotation transformation matrices are developed in Secs.
5-1,5-2 and the form of g for a thin curved member is given by (15-38).

The local flexibility matrix 8o is defined by (15-55). Using the above notation,
the expressions for the submatrices are

gl = RigR,
giz = R;glzR/x (15-66)

‘ g2, = R;gzzR/!
Note that g,, = 0 and g, ,, g,, are diagonal matrices when the shear center

coincides with the centroid. If, in addition, axial and shear deformation are
neglected, g;; = 0.

We let
(\lea) [ @m
V=4 -‘y;?,QTg&'_, o = [lfl__:_il’_{%] (15-67)
TR PP
Bxm

The submatrices follow from (15-65):
Y=gl + g’ilng + (81.X5o)" + X%'QngzX;'JQ
Vi, = gl + X5 g5 (15-68)

Vi = 852

Next, we partition J consistent with s:

}x Xa) | j«xlﬂ

Sp

J, = ds = | Shil | Th12

? L" v B % Jr 22 (15-69)

=M

Sp
JP, ij = J.SA “’fj ds

Finally, we partition {":

g t ]
g [ N
[f’f-f BN R (15-70)
S(/fxﬂ)
fz'; JB, ij = J‘SA l"u ds
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The initial deformation matrix due to an arbitrary loading at point C can be X,
determined with (15-62). Its partitioned form is
(¥ o) = X B P
(a X a) (@ x f) (@x1) Y
n ’ n n M s
{_Vg} _ [59_11:__;’_@32(52_ir;’.e«,lz} {PS (15-71) f pme
o JE 12 = Je, 22X%e i Jc 22 Te¢ N Fea 2
x ) % 1) nt I 7732 up2 MBI &
. . . ’ s WB
where vg, 03 denote the initial translation and rotation matrices. 4 L‘ cl Ta o I t R '
The member stiffness matrix, k", is obtained by inverting . We write / g 7 — X
N ) B3,UB3 Fpi,up)
(x % a) (@xp) - 3 -
1 11 : 12 Fes & '
k"= ()" = |+ —en (15-72)
( [ 12T | 22] A 7 M
B> p . Mp3, wg3
One can easily show that (we drop the frame superscript on {}; for convenience) L 7/
Gy o= (f — £l )7
nyo= =k 0,0 (15-73) X5 Xy is centroidal axis.
" fwl(l Tk ) : X2, X3 are principal inertia directions.
22 — 22\ 125812
Once k" is known, the stiffness matrices kg, ki, and k' can be generated. Fig. 15-8. Summary of notation for a prismatic member.
Expanding (15-53) leads to the following partitioned forms:
1 NOW,
np =kt = | Ku__| K
ue b 22 0 0 E 0
pe= —| | KIX "12 _ [k LAl (5o Xoo=10 0 1 2= xo) @
BA kn T i k’l' fotlIMT + k){'ll T B 0 (L ‘CQI) I‘ 0
" = Gy ¢' A -.'ig_, f.._f\. | Then, using g defined by (15--38), we obtain
AT 1 X3.A 4+ B AT{C ‘
L/AE 0 | 0
15-9. MEMBER MATRICES—PRISMATIC MEMBER - L( 1 x%) L3 f L
‘ . . . . f = 2 | ‘(2/\1
In Chapter 12, we developed the governing equations for a prismatic member u=l_ M ,(,;_ g’;] 4 %15{‘ - ('J_h - e
and presented a number of examples which illustrate the displacement and Sym 'L 1 ‘(2 _L_3_
Jorce methods of solution. Actually, we obtained the complete set of force- Il A5G GJ 3E1 P

displacement relations and also the initial end forces for concentrated and

uniform loading. Now, in this section, we generate thc member flexibility [_ 0 0 L0
matrix using the matrix formulation. We also list for future reference the - Lx, P2
various member stiffncss matrices. f,=|GJ 0 | 26| (15-75)
The notation is summarized in Fig. 15-8. For convenience, we drop the B ; '
frame reference superscript n, since the basic frame coincides with the local —Ef— ~3EL )
frame, i.e, R™ = I. The positive sense of a displacement, external force, or = 2 |
end forces coincides with the positive sense of the corresponding coordinate 7 1GJ 0 0
a
Xlss‘éarting with (15-66), we have gf; = g;,, since R,, R; are identit tri : foo = L/EL, | 0
, 4 i S » Rp y matrices. 4242 Y
Once Xp, is assembled we can determine the submatrices of  from (15-68). | Sym | L/EI,
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The submatrices of k are generated with (15-73), (15— 74) and are listed below
for reference. Transverse shear deformation is neglected by setting a, = a3 = 0:

_ 12EL, - 02EL
Q242 BT’
I, I
# o 2 It =3
Iz 1+ a, P+ oa,
GJ 12E B
by = I “Ea,‘(fgh + X31%)
" AE ’ B
—_ 0 Lo
L |
12EI% |
St I sl B
S | 12EI3
| >ym | LY
T 0 | 0 i 0
LELY | _OLIY
k12 = .___~_L_ __________________ lf. . (15—-76)
12EI%x, 6EI% 0
|
i 6EI3%, 6Ll ]
b, L2 %
EIf |
kzz = (4 -+ (lz)"‘“—‘ { O
, N
Sym L@+ a3) —
L f .
B 0 0 0
~12EI%x, 0 6EI%
A=l L7 L2
12EI%%, —GEIy |
L3 L? |
(change sign of (2, 3) and (3, 2) in k,,)
r —GEIER, | —6EItX, 7
by —qz ]
6EIfX EIf |
B = L; 2 —(2——a2)~— ! 0
"""""" T “lf*‘—"““A'"E'I;
6EI%%, ! ;
|12 0 ! —(2 — as) T

S —)

SEC. 15-9.

MEMBER MATRICES—PRISMATIC MEMBER

, —6EIfX, | —6EIfx,
1 L2 : LZ
EI¥ |
4+ ap) =2 | 0
L |
““““““““““““““““ F"“‘*‘“}j;
Sym {} 4 + ay) —Li

(change sign of (1, 2), (1, 3) in k,,)
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Finally, the fixed end forces due to a concentrated transverse force and a
uniform transverse loading are summarized below. -

Concentrated Force P,

L 12Er,
T GAL?

% = X1

‘XC - L
_ Xc + as/2
Mys = Lol xc)( et i/-)

1+ ay

Fpp = —(X)*Pcy — T Mp;
My = —X3(XcPcs + Fyy)
My = —Mpy,

- - | Qe
My = —L(xcpcz + Fpy + TMm)

Concentrated Force P,

a 12f12
27 GAL?
Xe + ay/2
MBZ = —LPe3X(1 — %) (‘C*_*ZL)
+ a,

Fps = —Pcs(X)? + - Mzzz

My = Xy(XcPcs + 1’83)
MA1 = —Mpy,
FA3 = ”Pcs - F33

_ — 1
My, = L(v?cpm + Fps — ZMBZ)

(15-77)

(15-78)
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Concentrated Torque T ¢y

MBi = - TCl'YC

_ B (15-79)
My = —Tei{l — X¢)
Uniformly Distributed Load, b,
- - b,L
Fpy =F = ———
B2 A2 5
_ _ b,L? {15-80)
Mgy = —M 3 = ——
B3 43 B
M B1 = M a =0
Uniformly Distributed Load, b,
_ _ bsL .
F = F = ————
B3 A3 5
. _ [ (15-81)
M., = — —
B2 M, )
M B = M a =0
Uniformly Distributed Torque, m,
_ _ my L
Mpyy = My = ‘“‘%" (15-82)

15-10. MEMBER MATRICES—THIN PLANAR CIRCULAR MEMBER

In this section, we generate the flexibility and initial deformation matrices
for a thin planar circular member, of constant cross section, using matrix
operations. We include extensional and transverse shear deformation for the
sake of generality. Some of the relations have already becn obtained as illustra-
tive examples of the force and displacement methods. 1n particular, the rcader
should review Example 14-6, which treats planar deformation, and Examples
15-4, 15-5, 15-10 for out-of-plane deformation.

The notation is summarized in Fig. 15-9. By definition, Y, and Y, are
principal inertia axes and 7; = 0, i.e., the shear center lies in the plane con-
taining the centroidal axis. It is convenient to take the basic frame (frame n)
to be parallel to the local frame at B. The three-dimensional forms of R, R,
and X3, are

cosy —siny | 0O R !0
R™ =RY = [siny cosy | 0| = [ ,RMTL_,]
i
o 0
R, = R, = R™ (15-83)

SEC. 15-10,

THIN PLANAR CIRCULAR MEMBER
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X'IEQ = X%Q =

We use
R, = R% Ry, =1
Xio = [R(1 = cosy)  Rsiny] @)
for planar deformation and
R, =1 R, = RY
Xy, = [~R(1‘ — cos r;)] ~ (b)
—Rsing

for out-of- i i
out-of-plane deformation. Since the complete flexibility matrix is desired

1t iS ‘ust as con Cnleﬂt to WO k Wt SU‘) 1 S O (Hde] .; as to C()“Sldel
\% T 1 h Indtl 1CeS f i
SCpala Cly the planar an Out-Of-pIanC cases.

l Pes

C
fCl

Fh b Fb b
Fauitigy l &FBI’HBJ

— b b
M}]'wab3 i \ Mm,wm
Fig. 15-9. Summary of notation for a pianar circular member

We consider the member

defined by (15-38). Expandin
matrix,

to be thin and use the local flexibili i
xibility matrix
g (15-66), (15-68) leads to the member flexibility
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% =Rz BT GA N
El, EI,

o ST eAR

a; = 4, + Gs
a, = a, — G
¢y L+ )
cy = (1 —c)

V2

= \2
Y2
C4:Cs+ct(1“—§>

i

3
5,{95(3 + dy)
EI; {2

s 0
R o}

{GB (1 + a)

~(1 + ay)sin Ogcos 0 }

-
fH"

12 = (fz r)T

2

- J—
2, =

OF AN ARBITRARY MEMBER CHAP. 15

(15-84)

Symmetrical

R?
e {0y(cy + Cy)
Elz{ pley + Ca

— 2¢, sin 0 — ¢y 5in O COS 03}

e
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We consider next the determination of the initial deformation matrix due to
an arbitrary concentrdted load at an interior point, C. Now, the flexibility
matrix for the segment AC referred to the local frame at C, which we denote
by £, is known. We just have to change 85 to 0, and superscript b to ¢ in
(15-84). When the external load is referred to the local frame at C, the displace-
ment at C is given by

Ui = T4cPe (a)
The displacement at B due to rigid body motion about C is
Uy = Ty Ue = A R "YU (b)

Finally, we can write

(7 By = (071%)9; = (ApF R T3 )PE

4
Vo =up = RIfc 1y + ’\uc G )P
+ RiTic, 12 + Xk R fAc 22)T¢ (15-85)

0 = of = RIS )PE + Rific, 22)TE
The uncoupled expressions follow.

Planar Loading
Vo1 =ty = = A { (1 + '«w‘«cos f]c> + sin ye — sin Oy
243
+ sin f¢ ( + ; cos 9,;)} Péy
R? l+4a
+ E}; {1 - €08 0‘: + -*‘—“j**‘“ 9C sin He

1 .
— w‘%ﬁ% sin O sin OB} Pg,

RZ
+ = {BC + sin e — sin QB}TG

El,

3 {15~86)

0 w, = X2 E—i’»mﬂ sin 7
= Up = I, ¢ St 7je

2

L+a, . .
+ cos 7 — cos O — —~2~——3 sin 8¢ sin (9,;} P&y

R* (1 +a 1+ a, .
+ff; {_»2___‘ fc cos e — 3 2 sin G, cos 93} Pg,

LI {cos Ne — Cos OB}T(B

R2 . . R
0o, 3 = wg3 = —— {(GC sin Oc)P¢y + (1 — cos 9c)PZ~z} RO

bI TC3
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Out-of-Plane Loading
R3
Vo,3 = Ups = g~ {BC(C1 COS ¢ + €4) — €5 sin O¢ cos Op
2
+ c3(— sin B¢ — sin 05 + sin nc)}Pc3
R? . .
{— c18¢ cos ¢ + ¢, sin B¢ cos By + ¢; sin GC}TCC1

+ —_
El,
2

+ E— {—010(: sin Ne — €3 sin Ocsin 05 — 03(1 — cos GC)} e
2

2

0% 1 = @by = L, {—cﬁc oS e + Ca(sin Oy — sin f¢)

+ ¢, sin O cos O Py

R
+ EI—{QGC COS H)¢ — €, sin B¢ cos OB}TEI (15-87)
2 .

+ ——{c Oc sin yic + ¢, sin O¢ sin 0pp TE,
EI,

2
0%, = o, = BT {clf)c sin #¢ + c3(cos O — cos #¢)
“52

— ¢, sin O¢ sin GB}PC3

R . . .
+ —— {—~c0¢ sin 4o + ¢, sin B¢ sin O,5T¢4
EI,
R . o
+ ——<¢10¢ cos e + ¢4 sin ¢ cos O30T,
El,

When the loading is symmetrical, one can utilize symmetry to determine the
fixed end forces. The most convenient choice of unknowns is the internal forces
at the midpoint, i.e., § = 05/2; F| and M5 are unknown for the planar case and
only M, is unknown for the out-of-plane case. Explicit cxpressions for the
fixed end forces due to various loading conditions arc listed below.

Planar Loading

Fig. 15-10 defines the notation for the planar case.

We consider two loadings: a concentrated radial force P applied at C, and
a uniform distributed radial load b, applied per unit arc length over the entire
segment. The basic frame is chosen to utilize symmetry. We determine the
axial force and moment at C from the symmetry conditions u;, = w5 = 0.

CASE 1-—CONCENTRATED RADIAL FORCE P

P
Fe, =+

. r
2 PCl :E"‘/I

SEC. 151
0. THIN PLANAR CIRCULAR MEMBER
529

P

Fig. 15-10. Notation for planar loading

si.n o 1
———l (] . + a, .
(= cosa) + -“.2_«3 sin? o

=% — —
NIET N e
3 o + |- 5 ) sin « cos o
RP (] —
M _Rp Cos o sin «
i A SO
B = =l = Fey
In T P
=l = -2
A2 2
o PR - i
S {Sm - Lm0 fsing
. y T cos
CASE 2—UNIFORM DISTRIBUTED RADIAL LOAD b
Fea =0 2
Feiy = —Rb,(1 — a,¢p)

=— sin o
AN I W——
2 T+ ‘“) Sin « cos g

« 2
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590 BN PR | (15-90)
s sin o (15-89) f My = My, = '"2“(1 — oS ) .
Mc = R?baacdp | =1+ =~ | PR
Fr, = —Fy = — Rb,(cos o0 — a.p) ; My, = —M?%, = Mc, ~ 4~2—— sin o
_,},}Z:F-;Z:ﬁ[{bzsina . 1 - - P
Y Vi 2b,a. izlﬁ—oostx] ‘ Fp=TFy= -5
MB =] —-—MA = R Zae o ! -
l CASE 2—CONCENTRATED TORQUE T
Out-of-Plane Loading i Foi =0
c3 —
. ion for the out-of-plane case. - |
Figure 15—-11 defines the notation ‘ - uple T—both T
Wi consider four loadngs: & COHC@HUZWC‘ f(zimeu]:x’ifzrrlt(il zc‘li:?rlilt‘))uied couple } M, = 5
i : iform distributed force b3; ana d . . . o
apphfﬁ atbce;liiigl moment at C 18 obtained using the symmetry condition E . M - ZM_, osinfa
my. (;‘e c 2 oc; + ¢, Sin o cos « (15-91)
Wy = V. . { .
. ' _ _ T
F3 =M = ——
Bl Al 2
_Z?z = _MZZ = M¢,
FB = FA = 0
CASE 3—UNIFORM DISTRIBUTED LOAD by
Fey=Mc =0
5, C(sino — o) + ¢, sina(l — cosa) + cx(sina — a cos «)
MCZ = R b3 N -
acy; + ¢, sin o cos (15-92)
V%, = M", = R%b,(sin o — o cos o)
W, = —M%, = Mg, — R?bs{asina — [ + cos o)
FH = FA = --PROL )
CAsE 4—UNIFORM DISTRIBUTED COUPLE 1,
FC3 = ]\/[CI - 0
¢le — sina) + ¢, sinafcos a0 — 1
Mo = my 4= 0 + 63 Sinacosa — 1)
acy + ¢, sin o Cos o (15-93)
My, = M%; = —mRsin«
) W5, = — My, = Mcy — mR(1 — cos o)
Fig. 15-11. Notation for out-of-plane loading.
CaSE 1—CONCENTRATED FORCE P 15-11. FLEXIBILITY MATRIX—CIRCULAR HELIX
P In this section, we develop the flexibility matrix for a member whose centroidal
Fes = 2 axis is a circular helix. The notation is shown in Fig. 15~12. The principal
M.. =0 inertia direction, Y,, is considered to coincide with the normal direction, ie.,
c1 PR ¢, sin® o + c5(1 — cos ) i the inwgrd radial direction, at each point. We also suppose the cross-sectional
Mcy, = > "“'27&A+—E4§§msi o« ‘ properties are constant. For convenience, we summarize the geometrical
' 2 ,
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relations:T
x; = Rcos @
X, = Rsin 8
xy = C8
dsS = « df
o = [R? + C*? = constant

1 .
= ;(-R sin 0i, + R cos 01, + Ci,)

i =1,
fi=1, = —cos i, — sin 0i,
PO 1 .
b=ty = &(C sin 01y — C cos 07, + Ri3)
| |
—-Iisin 0 | 5cos ) | g
L I SR N
Ro=Ry=R"=|-cos0 | —sinf | O
| i
~sin0 | —Zcosf | —
[ P
0 —CO, - 0) R(sin 0, — sin 0)

X, = | C(05 — 0)

i [

| |

E 0 g ~ R(cos 0 — cos 0)
— R(sin 05 — sin ) | }

R(cos 05 — cos 0) 0

The steps involve only algebraic operations and integration. We first deter-
mine gf; using (15-66), then V;; from (15-68), and finally f;; with (15-70). In
what follows, we assume the shear center coincides with the centroid and neglect
extensional and transverse shear deformation. With these restrictions,

ghh=gi,=0 g5 =R*TERY (b)
- -
GJ
_ 1
S TS
l
and the expressions for y;; reduce to
V2 = g5
Yo = X%’QT\L’zz (¢

‘l’n = ‘*I’IZX'I'}Q

The flexibility matrix for a constant cross section is given below.

T See Examples 4—6 and 5-3.

SEC. 15-11.

Xn

FLEXIBILITY MATRIX—CIRCULAR HELIX

__— Centroidal axis

Yy

s 1
A‘

XX X, ~directions of basic frame

Y3, Y3—principal inertia directions

Fig. 15-12. Notation for circular helix.

Notation—Dimensionless Parameters

R*EI, C*I,
2 GJ AP,

1_23+ C* (EI\ I,
o« 2\GJ)I,

ge = 5@ I, EI,
T AL G
g, — Ras _R*[1,  El
MECERRP~N I ey
1+ a —a
a5 = _T—.l a6 = L/)_(i{
a, + a . —
(17:42_6 aS:GJ‘zas
_ a6 -+ 3(14 (16 ’504
ag = = =

b a9 = 2

n
XZ

533
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Elements of {7
fir Sym
fZl f22
f31 f32 f33
CZ(X [423 ) . . 0 s 0
fir ==~ + 5 9,, + 2a, sin 0 + ao sin 05 COS Up
2
+ R ?Za {OB( + sin? @ > — 2sin 8y + 5 sin Oy cos OB}
El,
foy = g—ﬁ {—-E-G- 0% — ag sin® Op + aq(fp sin fp — cos O + cos? 63)}
El, 2

2 L.
R ,a * {cos 050y sin O — 1 + cos H,;) -3 sin? 03}

fi1 = %—E{—%ﬁ cos B + (a, — ag)(1 — cosp) — as sin? 0y + ayby sm93}
“42

2
_Ce {a793 + %Sf 03 — ayo sin 05 cos Oy — 2a,0g cos 03}
2

2 3 .
+ 1%2—6}2—“- {93 (% + cos? 93) ) cos B sin 93}
3

_ RCuo _
fi2 = I,

+ ag sin O + a4 sin 05 oS 0,,}

95 02 sin 0 + a,(05 — sin 0p) + a1o0p cos Op

RZ

(15-94)
‘f33 EIZ

{(ax + ag)fy — 2a, sin Oy — agsin bp cos 0,,}

Elements of f{,

fis fis Jie
fi, = Jaa fas J26
fia fss JSae
fia = Ca {—a4 sin 0 + a40p + as sin Op cos 05}
42 )

Ca fas . 2
fis = AE?;{—Z— 03 + ag sin 03}

Cayx Rayx i — 1 4+ cos }
f16 - — EI3 {1 — COoS 93} —_ £l {03 sSim 9;; B

2 3

faa = ;}x { 2502 + agsin® O — au(l — cos 0,,)}

Co .
fas = B, {as(ﬁ p — sin fp cos 93)}

e
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Casu

| Ra,o '
fre = ——47— {0 — sin 6 } + 2105 cos 05 — sin 0
26 El, |'® B £, B 5

R
Jra = - {af,(?,; sin O — a,{1 — cos 03)}
2
R% e
Jfas = i, iaS(sm 0 — 05 cos 03)}

Cax
Sfr6 = = i, {sm()B— 3}

Elements of 15,

—~

= {0593 + ag sin O cos Oy} Sym
] *dg . 2
2, = LI sin”® Op l] {as0p — ag sin O cos O}
2
ods 0a,
X1 — cos @ ‘
_EIZ ( cos Op) f12 sin Op . il O

15-12. MEMBER FORCE-DISPLACEMENT RELATIONS—PARTIAL END
RESTRAINT

In Sec. 15-7, we considercd an arbitrary memwber which is completely re-
strained at both ends. This led to the definition of the member flexibility matrix
and a sct of equations relating the cnd forces and the end displacements. Now,
when the member is only partially restrained, there is a reduction in the number
of member force unknowns. For example, if therc is no restraint against rotation
at B, My = 0, and there are only o. unknowns (where o is the order of I'y), the
rotation ®y at B has no effect on the end forces. To handle the case of partial
restraint, we first determine the compatibility cquations corresponding to the
reduced set of force unknowns. Inverting these equations and using the equi-
librium relations for the end forces results in force-displacement relations which
are consistent with the displacement releases.

Let Z denote the force redundants. Normally, one would work with the
primary structure corresponding to Z = 0. However, suppose we first express
the force at a point, say Q, in terms of the end forces at B, using, as a primary
structure, the member cantilevered from A:

. -.q;:Q: /QO’*‘ ann

,g"’;—n — —'IIA 0 '%.BA'/' . (a)

Next, using the prlmarv system corresponding to Z, = 0, we express Z & in terms
of the applied external load and the force redundants:

T3 =EZ+G (15-95)
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The elements of G are the end forces at B(for Z = 0) due to the applied external
loads. Note that G = 0 if Z contains only end forces at B.
Now, the principle of virtual forces requires

Sj” AFTE® + gF)S = AT TUY + AT U, (b)
A

for any self-equilibrating virtual-force system. Taking the system due to AZ
results in the compatibility equations for Z. It is convenient to work first with
the virtual force system due to AF . Equation (b) reduces to

AFYI + OFY) = ATy @y — X0 ©
= AFy v
where ¥7%, {” are the initial deformation and flexibility matrices for the full end

restraint case. Substituting for F7 using (15-95), and requiring the resulting
expression to be satisfied for arbitrary AZ, we obtain

(ETPE)Z + ET(¢" + 'G) = E™v™ = ENA — X510 (15-96)

{t should be noted that %}, %, arc the displacements of the supports at B, A.
We suppose Z is of order g x 1, i.c., there are ¢ force redundants. Also, we

let i be the row order of # (and %).

{xx 1}
{ix 1) F .
F o= e 15--97
M ( )
(Bx1)
With this notation,
Eisi x g
. d
Gisi x | @

and (15-96) represents g equations. For convenience, we let
f, = ET("E g x q

15~
o, ="o +1'G (ix1 (15-98)
and the member force-deformation relations take the form
— T ,.//n . A//'rx
f,Z = E'( b2 (15-50)

= BTy — Xyl — 17%,)

We refer to {, as the reduced flexibility matrix since, in general, ¢ < i. Actually,
f, is the flexibility matrix for 7. and it is positive definite since E must be of rank
g, ie., the force systems corresponding to the redundants must be linearly
independent. Note that one can determine f, directly by working with the
primary system cotresponding to Z = 0. This is the normal approach. The
approach that we have followed is convenient when the member flexibility

matrix is known.

e b35S et e
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At this point, we sum i ;
) R marize the > P> at1 .
restraint. he force displacement relations for partial end

Z = member force matrix

Ty =EZ + G
j;=g’_—;,0“‘%gxxﬁ%
f, = reduced flexibility matrix (g x q) = ETfE

Vo2 =170 4+ "G

WE=ET =y ) (15-100)
, = BN, — gl - vy )
Note that, for complete end restraint,
Z = egrg E = Ii
G=0 P = (15-101)

We will use (15-100) i s
member system ) in Chapter 17 when we develop the formulation for a

Continuing, we let

k, =f! - (15-102)
The force redundants are obtained by inverting (15-99):
Z = kE"(uy ~ Xl — P2 (15-103)
Substituting for Z, the end forces at B are given by
. T = Ok BN Wy — aylan — 4y 4 G (©
We defined k” as the effective member stiffness matrix -
ki = Ek,ET
(15-104)

= E( ETf"_E) -lgT

In gencral, k! is singular wher i si ;
takes the form '@ = bsince Eis only of rank q. Equation ()

Th =Ty + KU - Ryl
o=~k , + G (15-105)
= —kytg + (I, - K'f)G
The end forces at 4 are determined from (a):
G . G n 1 ngamn 7
4= T — Xy KUy + Ay keI,
Fhi = ~F o — L3 f T (15~106)

Finally, we write the relations in the generalized form

Py = Fp i+ KUy + K30,
G - G
Fa =T+ KgWy + K,
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where
15-107
Ky = Kt (15107
no__ (kn )T = —} n%f’n.T
BA AB el Ba
A = _gﬁAkﬁA = %%Akga"'iz’f

Comparing (15-107) with (15-53), the corresponding expressions for the com-
plete restraint case, we see that one has only to replace k™ by kg in the partitioned

forms for kg, kp4, and k% 4. The equation for 473 ; is different, however, due
to the presence of the G term.

Example 15-12
Suppose there is no restraint against rotation at B. Then, M} = 0. We take Z = Fj
and generate E, G with (15-95).

F‘-n la o ) .
%ﬁ:ﬁﬂ&g=m+c (@)
For this case, G = 0. The reduced flexibility and stiffncss matrices follow from (15-98),

(15-102),
fr = ﬂl
b
k, =7t ®)

and the effective stiffness matrix follows from (15~104):

ga. ~1 | 0
A LIV i
ke [0 } 0] ©

Finally, the force-displacement relations are {see (15~99)):
T} = uf — o — Xjfo) — v5 (d)

Note that premultiplication of " by E” eliminates 0", the relative rotation at B. There is
no compatibility requircment for the end rotations in this case; i.e., the support rotation
at B, which we have defined as wf}, does not introduce any member deformation.
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. T, £. P.: “Nonuniform Torsjon of Thin-walled Bars of Variabie Segtion 1‘;

International Association for Bri
Vor 25 1965, g 1e e ridge and Structural Engmeermg Publications, Zurich,

PROBLEMS

15*1. Ref g 4 .
and a squareeii;txo ixaf?lple 15-5. Determine ¢ for a typical wide-flange section
deformation vs bindicr?g‘d (t?ommefnt on the relative importance of torsional
el - clormation (i.e., terms i i L oY
Distinguish between deep and shaHov&(/ mem!;:;s volving ¢, in Equation (©).

15-2, i
2, Refer to Example 15-7. Consider a rectangular cross section and ¢

varying linearly with X1, as shown in the sketch, Evaluate o / (PZLB) d
82 an

P,L3 L
Ugs 3L, for a range of ¢ and a/b.

X, Prob. 15-2
Y ,
¢
3
L =%
. b 12
3
3
Centroid L= gx%“
Y3
X1 —
=59
a

15-3.  Determine the i
reaction at B and translati i ; :
at C - nsiation (in the dir
for the member sketched. Neglect transverse shea(r deformaet‘l;(t)lr(lm orp)

/ P Prob. 15-3
. |
Shear center
\ Centroid
Yy —P—
I:e ‘1
»

IRE
I Vertical restraint at 3
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15-4, Repeat Prob. 15-3, considering complete fixity at B. Utilize sym-

metry with respect to point C.
15-5. Derive (15-27). Start with the definitions for the strain measures

(see Fig. 15-2),

op  dp
sin Y12 = _af_iyi
op ('/5}
0S

a3y,

neglect second-order terms, and note (15-26).

15-6. Summarize the governing equations for restrained torsion. Evaluate
b, and b5 (see (15-34)) for a symmetrical wide-flange section and a symmetrical
rectangular closed cell. Comment on whether onc can neglect these terms.

15-7. Refer to Example 15-11. Specialize the solution (Equations f) for
205 = AL » 1. Verify that (g) reduces to the prismatic solution, (13-57),
when 65 — 0. :

15-8. Consider a member comprising of three segments. Assuming the
flexibility matrices for the segments are known, detcrmine an expression for
the member flexibility matrix in terms of the segmental flexibility matrices.
Generalize for n segments.

15-9. Discuss how you would apply the numerical integration schemes
described in Sec. 14-8 to evaluate Jp, defined by (15-69).

15-10. Verify (15-73) and (15--74).

15-11. Determine the fixed end forces {or the member shown, using (15-77)

and (15-79).

X3 Prob. 15-11

X2

Centroid

P

X3 7

15-12. Solve Prob. 15-3 using (15-84) and (15-87).
15-13. Verify (15-90) and (15-91). Apply them to Prob. 15-4.

.
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tiOIHSS-~(}4. t Startin_g yith (1_5«8_7), develop expressions for the initial deforma-
ue to an aribitrary distributed loading, b, = b (0). Speciali
constant and verify (15-92), T W Specialize for by =
15-15.  Using the geometric relati ibili
: : s and flexibilit i 1 )
helix (constany TE the geom clations an Yy matrix for a circular
i Gooonstant S section; ¥ coincides with the normal direction) developed
(@) Develop a matrix equation f i
) or the displacements at B due t i
. referred tonfhe global frame and applied at 6. Hint: Sel;e(;(gjliilg)admg
(b) Evaluate u, for the loading and geometry shown. -

Prob. 15-15
Y3, b

Yo, n

*16- I)e‘erml h y <
15 5 net e Ieducoed Illelnbel ﬂexlblht m llI‘lX jOI no Iestlalnt

15— ;
5-17.  For the planar member shown, determine E and G correspondihg to
Z = {Fm sz MA}

Then specialize for rotation releases at A, B and determine k
o
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Prob. 15-17

R | Part IV

~ Fi

el ~ ANALYSIS OF A

- MEMBER SYSTEM

15-18. Determine E and G for—
(@) no restraint against translation in a particular direction at B

(b) no restraint against rotation about a particular axis at B
Hint: Review Example 15-12. ' 3

Xz

2

PR



